HGF/c-MET Signaling in Melanocytes and Melanoma. 2018

Malgorzata Czyz
Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland. malgorzata.czyz@umed.lodz.pl.

Hepatocyte growth factor (HGF)/ mesenchymal-epithelial transition factor (c-MET) signaling is involved in complex cellular programs that are important for embryonic development and tissue regeneration, but its activity is also utilized by cancer cells during tumor progression. HGF and c-MET usually mediate heterotypic cell⁻cell interactions, such as epithelial⁻mesenchymal, including tumor⁻stroma interactions. In the skin, dermal fibroblasts are the main source of HGF. The presence of c-MET on keratinocytes is crucial for wound healing in the skin. HGF is not released by normal melanocytes, but as melanocytes express c-MET, they are receptive to HGF, which protects them from apoptosis and stimulates their proliferation and motility. Dissimilar to melanocytes, melanoma cells not only express c-MET, but also release HGF, thus activating c-MET in an autocrine manner. Stimulation of the HGF/c-MET pathways contributes to several processes that are crucial for melanoma development, such as proliferation, survival, motility, and invasiveness, including distant metastatic niche formation. HGF might be a factor in the innate and acquired resistance of melanoma to oncoprotein-targeted drugs. It is not entirely clear whether elevated serum HGF level is associated with low progression-free survival and overall survival after treatment with targeted therapies. This review focuses on the role of HGF/c-MET signaling in melanoma with some introductory information on its function in skin and melanocytes.

UI MeSH Term Description Entries
D008544 Melanocytes Mammalian pigment cells that produce MELANINS, pigments found mainly in the EPIDERMIS, but also in the eyes and the hair, by a process called melanogenesis. Coloration can be altered by the number of melanocytes or the amount of pigment produced and stored in the organelles called MELANOSOMES. The large non-mammalian melanin-containing cells are called MELANOPHORES. Melanocyte
D008545 Melanoma A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445) Malignant Melanoma,Malignant Melanomas,Melanoma, Malignant,Melanomas,Melanomas, Malignant
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017228 Hepatocyte Growth Factor Multifunctional growth factor which regulates both cell growth and cell motility. It exerts a strong mitogenic effect on hepatocytes and primary epithelial cells. Its receptor is PROTO-ONCOGENE PROTEINS C-MET. Hepatopoietin,Hepatopoietin A,Scatter Factor,Factor, Hepatocyte Growth,Factor, Scatter,Growth Factor, Hepatocyte
D019859 Proto-Oncogene Proteins c-met Cell surface protein-tyrosine kinase receptors for HEPATOCYTE GROWTH FACTOR. They consist of an extracellular alpha chain which is disulfide-linked to the transmembrane beta chain. The cytoplasmic portion contains the catalytic domain and sites critical for the regulation of kinase activity. Mutations in the c-met proto-oncogene are associated with papillary renal carcinoma and other neoplasia. HGF Receptor,Hepatocyte Growth Factor Receptor,c-met Proteins,met Proto-Oncogene Proteins,MET Proto-Oncogene, Receptor Tyrosine Kinase,MET Receptor Tyrosine Kinase,Receptor, HGF,Receptor, Hepatocyte Growth Factor,Receptor, Scatter Factor,Scatter Factor Receptor,c-Met Receptor Tyrosine Kinase,MET Proto Oncogene, Receptor Tyrosine Kinase,Proto Oncogene Proteins c met,Proto-Oncogene Proteins, met,c Met Receptor Tyrosine Kinase,c met Proteins,met Proto Oncogene Proteins

Related Publications

Malgorzata Czyz
December 2016, Journal of hematology & oncology,
Malgorzata Czyz
September 2008, Current molecular medicine,
Malgorzata Czyz
December 2011, Expert opinion on investigational drugs,
Malgorzata Czyz
January 2018, Current pharmaceutical design,
Malgorzata Czyz
February 2011, International journal of cancer,
Copied contents to your clipboard!