Resting amygdala connectivity and basal sympathetic tone as markers of chronic hypervigilance. 2019

Olena Kleshchova, and Jenna K Rieder, and Jack Grinband, and Mariann R Weierich
Hunter College, The City University of New York, 695 Park Avenue, New York, NY 10065, USA; The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, USA.

Chronic hypervigilance, a state of sustained alertness and hyperarousal in the absence of threat, has been shown to predict poorer clinical outcomes post-trauma. An exaggerated and persistent amygdala alerting response to affective information has been proposed as a reactivity-based, and thus indirect, marker of hypervigilance. However, because chronic hypervigilance is a persistent rather than reactive state, it should be directly observable under resting-state conditions without the need for exposure to affectively charged stimuli. We tested resting amygdala connectivity and basal sympathetic and hypothalamic-pituitary-adrenal axis activity as direct neural and neuroendocrine markers of chronic hypervigilance. 24 trauma-exposed women (age M = 22.9, SD = 5.5) and 20 no-trauma controls (age M = 21.1, SD = 3.2). Amygdala connectivity was measured using functional magnetic resonance imaging at rest and during viewing of novel and familiar affective scenes. Elevated amygdala connectivity during the viewing of novel scenes (exaggerated alerting response) and familiar scenes (persistent alerting response) was used as a reactivity-based index of hypervigilance. Resting amygdala connectivity and basal salivary alpha-amylase (sAA) and cortisol were tested as neural and neuroendocrine markers of hypervigilance, respectively. Compared to no-trauma controls, trauma-exposed women showed greater connectivity between the left amygdala and the ventral anterior cingulate cortex (vACC) both during affective processing and at rest. Exaggerated neural novelty response was associated with greater resting left amygdala-vACC connectivity and higher basal sAA, but not cortisol. Greater synchronization of threat-detection circuitry in the absence of threat and basal sympathetic tone might serve as complementary resting-state markers of the cognitive and physiological components of chronic hypervigilance, respectively.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D010913 Pituitary-Adrenal System The interactions between the anterior pituitary and adrenal glands, in which corticotropin (ACTH) stimulates the adrenal cortex and adrenal cortical hormones suppress the production of corticotropin by the anterior pituitary. Pituitary Adrenal System,Pituitary-Adrenal Systems,System, Pituitary-Adrenal,Systems, Pituitary-Adrenal
D012146 Rest Freedom from activity. Rests
D005260 Female Females
D006179 Gyrus Cinguli One of the convolutions on the medial surface of the CEREBRAL HEMISPHERES. It surrounds the rostral part of the brain and CORPUS CALLOSUM and forms part of the LIMBIC SYSTEM. Anterior Cingulate Gyrus,Brodmann Area 23,Brodmann Area 24,Brodmann Area 26,Brodmann Area 29,Brodmann Area 30,Brodmann Area 31,Brodmann Area 32,Brodmann Area 33,Brodmann's Area 23,Brodmann's Area 24,Brodmann's Area 26,Brodmann's Area 29,Brodmann's Area 30,Brodmann's Area 31,Brodmann's Area 32,Brodmann's Area 33,Cingulate Gyrus,Gyrus Cinguli Anterior,Retrosplenial Complex,Retrosplenial Cortex,Anterior Cingulate,Anterior Cingulate Cortex,Cingular Gyrus,Cingulate Area,Cingulate Body,Cingulate Cortex,Cingulate Region,Gyrus, Cingulate,Posterior Cingulate,Posterior Cingulate Cortex,Posterior Cingulate Gyri,Posterior Cingulate Gyrus,Posterior Cingulate Region,Superior Mesial Regions,24, Brodmann Area,Anterior Cingulate Cortices,Anterior Cingulates,Anterior, Gyrus Cinguli,Anteriors, Gyrus Cinguli,Area 23, Brodmann,Area 23, Brodmann's,Area 24, Brodmann,Area 24, Brodmann's,Area 26, Brodmann,Area 26, Brodmann's,Area 29, Brodmann,Area 29, Brodmann's,Area 30, Brodmann,Area 30, Brodmann's,Area 31, Brodmann,Area 31, Brodmann's,Area 32, Brodmann,Area 32, Brodmann's,Area 33, Brodmann,Area 33, Brodmann's,Area, Cingulate,Body, Cingulate,Brodmanns Area 23,Brodmanns Area 24,Brodmanns Area 26,Brodmanns Area 29,Brodmanns Area 30,Brodmanns Area 31,Brodmanns Area 32,Brodmanns Area 33,Cingulate Areas,Cingulate Bodies,Cingulate Cortex, Anterior,Cingulate Cortex, Posterior,Cingulate Gyrus, Anterior,Cingulate Gyrus, Posterior,Cingulate Region, Posterior,Cingulate Regions,Cingulate, Anterior,Cingulate, Posterior,Cinguli Anterior, Gyrus,Cinguli Anteriors, Gyrus,Complex, Retrosplenial,Cortex, Anterior Cingulate,Cortex, Cingulate,Cortex, Posterior Cingulate,Cortex, Retrosplenial,Gyrus Cinguli Anteriors,Gyrus, Anterior Cingulate,Gyrus, Cingular,Gyrus, Posterior Cingulate,Posterior Cingulate Cortices,Posterior Cingulate Regions,Posterior Cingulates,Region, Cingulate,Region, Posterior Cingulate,Retrosplenial Complices,Retrosplenial Cortices,Superior Mesial Region
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006854 Hydrocortisone The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Cortef,Cortisol,Pregn-4-ene-3,20-dione, 11,17,21-trihydroxy-, (11beta)-,11-Epicortisol,Cortifair,Cortril,Epicortisol,Hydrocortisone, (11 alpha)-Isomer,Hydrocortisone, (9 beta,10 alpha,11 alpha)-Isomer,11 Epicortisol
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

Olena Kleshchova, and Jenna K Rieder, and Jack Grinband, and Mariann R Weierich
January 1988, Annual review of physiology,
Olena Kleshchova, and Jenna K Rieder, and Jack Grinband, and Mariann R Weierich
January 2016, Psychoneuroendocrinology,
Olena Kleshchova, and Jenna K Rieder, and Jack Grinband, and Mariann R Weierich
July 2014, Human brain mapping,
Olena Kleshchova, and Jenna K Rieder, and Jack Grinband, and Mariann R Weierich
March 2019, Neuroreport,
Olena Kleshchova, and Jenna K Rieder, and Jack Grinband, and Mariann R Weierich
October 2014, JAMA psychiatry,
Olena Kleshchova, and Jenna K Rieder, and Jack Grinband, and Mariann R Weierich
April 2009, NeuroImage,
Olena Kleshchova, and Jenna K Rieder, and Jack Grinband, and Mariann R Weierich
October 2019, Brain connectivity,
Olena Kleshchova, and Jenna K Rieder, and Jack Grinband, and Mariann R Weierich
March 2013, The international journal of neuropsychopharmacology,
Olena Kleshchova, and Jenna K Rieder, and Jack Grinband, and Mariann R Weierich
June 2014, Cognitive, affective & behavioral neuroscience,
Olena Kleshchova, and Jenna K Rieder, and Jack Grinband, and Mariann R Weierich
June 2016, AJNR. American journal of neuroradiology,
Copied contents to your clipboard!