D1 dopamine receptors intrinsic activity and functional selectivity affect working memory in prefrontal cortex. 2021

Yang Yang, and Sang-Min Lee, and Fumiaki Imamura, and Krishne Gowda, and Shantu Amin, and Richard B Mailman
Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA. yangyang@psu.edu.

Dopamine D1 agonists enhance cognition, but the role of different signaling pathways (e.g., cAMP or β-arrestin) is unclear. The current study compared 2-methyldihydrexidine and CY208,243, drugs with different degrees of both D1 intrinsic activity and functional selectivity. 2-Methyldihydrexidine is a full agonist at adenylate cyclase and a super-agonist at β-arrestin recruitment, whereas CY208,243 has relatively high intrinsic activity at adenylate cyclase, but much lower at β-arrestin recruitment. Both drugs decreased, albeit in dissimilar ways, the firing rate of neurons in prefrontal cortex sensitive to outcome-related aspects of a working memory task. 2-Methyldihydrexidine was superior to CY208,243 in prospectively enhancing similarity and retrospectively distinguishing differences between correct and error outcomes based on firing rates, enhancing the micro-network measured by oscillations of spikes and local field potentials, and improving behavioral performance. This study is the first to examine how ligand signaling bias affects both behavioral and neurophysiological endpoints in the intact animal. The data show that maximal enhancement of cognition via D1 activation occurred with a pattern of signaling that involved full unbiased intrinsic activity, or agonists with high β-arrestin activity.

UI MeSH Term Description Entries
D008570 Memory, Short-Term Remembrance of information for a few seconds to hours. Immediate Recall,Memory, Immediate,Working Memory,Memory, Shortterm,Immediate Memories,Immediate Memory,Immediate Recalls,Memories, Immediate,Memories, Short-Term,Memories, Shortterm,Memory, Short Term,Recall, Immediate,Recalls, Immediate,Short-Term Memories,Short-Term Memory,Shortterm Memories,Shortterm Memory,Working Memories
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012189 Retrospective Studies Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons. Retrospective Study,Studies, Retrospective,Study, Retrospective
D017397 Prefrontal Cortex The rostral part of the frontal lobe, bounded by the inferior precentral fissure in humans, which receives projection fibers from the MEDIODORSAL NUCLEUS OF THE THALAMUS. The prefrontal cortex receives afferent fibers from numerous structures of the DIENCEPHALON; MESENCEPHALON; and LIMBIC SYSTEM as well as cortical afferents of visual, auditory, and somatic origin. Anterior Prefrontal Cortex,Brodmann Area 10,Brodmann Area 11,Brodmann Area 12,Brodmann Area 47,Brodmann's Area 10,Brodmann's Area 11,Brodmann's Area 12,Brodmann's Area 47,Pars Orbitalis,Frontal Sulcus,Gyrus Frontalis Inferior,Gyrus Frontalis Superior,Gyrus Orbitalis,Gyrus Rectus,Inferior Frontal Gyrus,Lateral Orbitofrontal Cortex,Marginal Gyrus,Medial Frontal Gyrus,Olfactory Sulci,Orbital Area,Orbital Cortex,Orbital Gyri,Orbitofrontal Cortex,Orbitofrontal Gyri,Orbitofrontal Gyrus,Orbitofrontal Region,Rectal Gyrus,Rectus Gyrus,Straight Gyrus,Subcallosal Area,Superior Frontal Convolution,Superior Frontal Gyrus,Ventral Medial Prefrontal Cortex,Ventromedial Prefrontal Cortex,Anterior Prefrontal Cortices,Area 10, Brodmann,Area 10, Brodmann's,Area 11, Brodmann,Area 11, Brodmann's,Area 12, Brodmann,Area 12, Brodmann's,Area 47, Brodmann,Area 47, Brodmann's,Area, Orbital,Area, Subcallosal,Brodmanns Area 10,Brodmanns Area 11,Brodmanns Area 12,Brodmanns Area 47,Convolution, Superior Frontal,Convolutions, Superior Frontal,Cortex, Anterior Prefrontal,Cortex, Lateral Orbitofrontal,Cortex, Orbital,Cortex, Orbitofrontal,Cortex, Prefrontal,Cortex, Ventromedial Prefrontal,Cortices, Ventromedial Prefrontal,Frontal Convolution, Superior,Frontal Gyrus, Inferior,Frontal Gyrus, Medial,Frontal Gyrus, Superior,Frontalis Superior, Gyrus,Gyrus, Inferior Frontal,Gyrus, Marginal,Gyrus, Medial Frontal,Gyrus, Orbital,Gyrus, Orbitofrontal,Gyrus, Rectal,Gyrus, Rectus,Gyrus, Straight,Gyrus, Superior Frontal,Inferior, Gyrus Frontalis,Lateral Orbitofrontal Cortices,Olfactory Sulcus,Orbital Areas,Orbital Cortices,Orbital Gyrus,Orbitalis, Pars,Orbitofrontal Cortex, Lateral,Orbitofrontal Cortices,Orbitofrontal Cortices, Lateral,Orbitofrontal Regions,Prefrontal Cortex, Anterior,Prefrontal Cortex, Ventromedial,Prefrontal Cortices, Anterior,Region, Orbitofrontal,Subcallosal Areas,Sulcus, Frontal,Superior Frontal Convolutions,Superior, Gyrus Frontalis,Ventromedial Prefrontal Cortices
D017447 Receptors, Dopamine D1 A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D1-class receptor genes lack INTRONS, and the receptors stimulate ADENYLYL CYCLASES. Dopamine D1 Receptors,Dopamine-D1 Receptor,D1 Receptors, Dopamine,Dopamine D1 Receptor,Receptor, Dopamine-D1
D018491 Dopamine Agonists Drugs that bind to and activate dopamine receptors. Dopamine Receptor Agonists,Dopaminergic Agonists,Agonists, Dopamine Receptor,Agonists, Dopaminergic,Dopamine Agonist,Dopamine Receptor Agonist,Dopaminergic Agonist,Receptor Agonists, Dopamine,Agonist, Dopamine,Agonist, Dopamine Receptor,Agonist, Dopaminergic,Agonists, Dopamine,Receptor Agonist, Dopamine

Related Publications

Yang Yang, and Sang-Min Lee, and Fumiaki Imamura, and Krishne Gowda, and Shantu Amin, and Richard B Mailman
February 1991, Science (New York, N.Y.),
Yang Yang, and Sang-Min Lee, and Fumiaki Imamura, and Krishne Gowda, and Shantu Amin, and Richard B Mailman
May 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Yang Yang, and Sang-Min Lee, and Fumiaki Imamura, and Krishne Gowda, and Shantu Amin, and Richard B Mailman
August 1995, Nature,
Yang Yang, and Sang-Min Lee, and Fumiaki Imamura, and Krishne Gowda, and Shantu Amin, and Richard B Mailman
November 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Yang Yang, and Sang-Min Lee, and Fumiaki Imamura, and Krishne Gowda, and Shantu Amin, and Richard B Mailman
December 2009, Behavioural brain research,
Yang Yang, and Sang-Min Lee, and Fumiaki Imamura, and Krishne Gowda, and Shantu Amin, and Richard B Mailman
June 2007, The Journal of physiology,
Yang Yang, and Sang-Min Lee, and Fumiaki Imamura, and Krishne Gowda, and Shantu Amin, and Richard B Mailman
January 2022, Frontiers in neuroscience,
Yang Yang, and Sang-Min Lee, and Fumiaki Imamura, and Krishne Gowda, and Shantu Amin, and Richard B Mailman
June 2022, Behavioral neuroscience,
Yang Yang, and Sang-Min Lee, and Fumiaki Imamura, and Krishne Gowda, and Shantu Amin, and Richard B Mailman
October 2014, Psychopharmacology,
Yang Yang, and Sang-Min Lee, and Fumiaki Imamura, and Krishne Gowda, and Shantu Amin, and Richard B Mailman
January 2002, Neural networks : the official journal of the International Neural Network Society,
Copied contents to your clipboard!