Proteinase yscE of yeast shows homology with the 20 S cylinder particles of Xenopus laevis. 1988

J A Kleinschmidt, and C Escher, and D H Wolf
Deutsches Krebsforschungszentrum, Institut für Zell- und Tumorbiologie, Heidelberg, FRG.

Proteinase yscE of the yeast Saccharomyces cerevisiae has been compared with the 20 S cylinder particles of Xenopus laevis. Both proteins are characterized by a similar group of 10-12 polypeptides with molecular masses ranging between 21 and 38 kDa. Antibodies generated against the 20 S Xenopus cylinder particles show cross-reactivity with yeast proteinase yscE subunits. The Xenopus particles and yeast proteinase yscE exhibit an identical image in electron microscopy. Both proteins appear as hollow cylinders mostly composed of four stacked annuli. The Xenopus 20 S particles exhibit proteolytic activity against the three peptide derivatives known to be substrates of proteinase yscE. The pH optimum for activity and the inhibition spectrum of the proteolytic activities of Xenopus 20 S particles and of yeast proteinase yscE are identical. The RNA content of the cylinder particles and of proteinase yscE is below 0.1 RNA chain per molecule. Our data suggest that proteinase yscE from yeast and the 20 S cylinder particles of X. laevis are homologous, highly conserved proteins carrying the catalytic character of a peptidase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi

Related Publications

J A Kleinschmidt, and C Escher, and D H Wolf
November 1983, European journal of cell biology,
J A Kleinschmidt, and C Escher, and D H Wolf
November 1984, The Journal of biological chemistry,
J A Kleinschmidt, and C Escher, and D H Wolf
December 1984, Nucleic acids research,
J A Kleinschmidt, and C Escher, and D H Wolf
February 1986, The Journal of biological chemistry,
J A Kleinschmidt, and C Escher, and D H Wolf
August 1974, Journal of molecular biology,
J A Kleinschmidt, and C Escher, and D H Wolf
July 1992, Molecular microbiology,
J A Kleinschmidt, and C Escher, and D H Wolf
June 1974, Biochemical and biophysical research communications,
J A Kleinschmidt, and C Escher, and D H Wolf
June 1992, Biochimica et biophysica acta,
J A Kleinschmidt, and C Escher, and D H Wolf
November 1974, Journal of molecular biology,
Copied contents to your clipboard!