Topography of lactose permease from Escherichia coli. 1988

M G Page, and J P Rosenbusch
European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany.

The topography of lactose permease, in native membrane vesicles and after reconstitution of the purified protein into proteoliposomes, has been investigated by labeling the membrane-embedded portions of the protein using photoactivatable, hydrophobic reagents and by labeling the exposed portions of the protein with water-soluble, electrophilic reagents. Some sites of modification have been localized in fragments of the protein produced by chemical and enzymatic cleavage. These define a number of hydrophilic loops and membrane-spanning regions and give some substance to topographic models of the permease. The N-terminal third of the molecule was labeled by three photoactivatable reagents (3-(trifluoromethyl)-3-m-iodophenyldiazirine and the phospholipid analogues 2-(aceto-(4-benzoylphenylether]-1-palmitoylphosphatidylcholine) and 2-(4-azido-2-nitrophenylaminoacetyl)-1-palmitoylphosphatidylcholin e) as well as the water soluble, electrophilic reagents. The C-terminal part of the molecule is labeled by the diazirine and, to a lesser extent, by the phospholipid analogues. It apparently has more nucleophilic groups accessible to water-soluble reagents than the N-terminal domain, in which the density of apparently unreactive ionizable residues proved to be unexpectedly high. The apparent lack of reactivity of some of these residues may be explained either by their being buried in the protein moiety within the membrane domain, or by their close association with other ionizable residues on the surface of the protein.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005033 Ethylmaleimide A sulfhydryl reagent that is widely used in experimental biochemical studies. N-Ethylmaleimide,N Ethylmaleimide
D001389 Azirines Unsaturated azacyclopropane compounds that are three-membered heterocycles of a nitrogen and two carbon atoms. Azacyclopropanes, Unsaturated,Unsaturated Azacyclopropanes
D026901 Membrane Transport Proteins Membrane proteins whose primary function is to facilitate the transport of molecules across a biological membrane. Included in this broad category are proteins involved in active transport (BIOLOGICAL TRANSPORT, ACTIVE), facilitated transport and ION CHANNELS. Biological Pump,Membrane Transport Protein,Membrane Transporter,Membrane Transporters,Metabolic Pump,Permease,Biological Pumps,Metabolic Pumps,Permeases,Pump, Biologic,Pump, Biological,Pump, Metabolic,Pumps, Biological,Pumps, Metabolic,Biologic Pump,Protein, Membrane Transport,Transport Protein, Membrane,Transport Proteins, Membrane,Transporter, Membrane,Transporters, Membrane

Related Publications

M G Page, and J P Rosenbusch
January 1983, Methods in enzymology,
M G Page, and J P Rosenbusch
July 1986, European journal of biochemistry,
M G Page, and J P Rosenbusch
January 1990, Research in microbiology,
M G Page, and J P Rosenbusch
June 2004, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M G Page, and J P Rosenbusch
April 1992, Journal of biochemistry,
M G Page, and J P Rosenbusch
March 1999, Journal of structural biology,
M G Page, and J P Rosenbusch
June 1994, Proceedings of the National Academy of Sciences of the United States of America,
M G Page, and J P Rosenbusch
November 2004, The Journal of biological chemistry,
M G Page, and J P Rosenbusch
August 1993, Proceedings of the National Academy of Sciences of the United States of America,
M G Page, and J P Rosenbusch
July 1994, Acta crystallographica. Section D, Biological crystallography,
Copied contents to your clipboard!