miR-494 Sensitizes Gastric Cancer Cells to TRAIL Treatment Through Downregulation of Survivin. 2018

Shuning Xu, and Danyang Li, and Tianyuan Li, and Lei Qiao, and Ke Li, and Leiming Guo, and Ying Liu
Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China.

OBJECTIVE TNF-related apoptosis-inducing ligand (TRAIL) is a novel and low-toxic anti-tumor drug used for various cancers. However, cancer cells usually develop mechanisms to acquire the resistance against TRAIL. Among these changes, dysregulation of microRNAs (miRNAs) usually occurs in cancer cells and is responsible for induction of drug resistance. METHODS Expression of miR-494 in gastric cancer tissues and cell lines was detected by quantitative reverse transcriptase real time PCR (qRT-PCR) analysis. Effect of miR-494 on regulating the TRAIL sensitivity to gastric cancer cell lines was evaluated by MTT assays. Bioinformatics and luciferase reporter assays were used to confirm the regulation of miR-494 on survivin. Mitochondrial apoptosis pathway in gastric cancer cells was tested by western blot and flow cytometry analysis. RESULTS Obvious downregulation of miR-494 was observed in gastric cancer cells. Furthermore, we found that expression profile of miR-494 was associated with TRAIL-sensitivity in gastric cancer. Enforced expression of miR-494 was found to sensitize the gastric cancer cells to TRAIL-induced cytotoxicity. Mechanically, Luciferase reporter assays proved that survivin was the target of miR-494 in gastric cancer cells. Enforced expression of miR-494 decreased the expression of survivin, and thus promoted the TRAIL-induced mitochondria collapse and apoptosis pathway. CONCLUSIONS MiR-494/survivin axis represents a potential mechanism which is responsible for TRAIL resistance in gastric cancer cells. Increasing the miR-494 expression may serve as a novel therapeutic strategy to sensitize gastric cancer cells to TRAIL treatment.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077022 Survivin An apoptosis inhibitory protein that contains a single baculoviral IAP repeat (BIR) domain. It associates with MICROTUBULES and functions to regulate cell proliferation as a component of the chromosome passage protein complex (CPC), performing essential roles for localization of the complex, chromosome alignment, segregation during MITOSIS and CYTOKINESIS, and assembly of the MITOTIC SPINDLE. It is expressed by fetal kidney and liver cells and highly expressed in ADENOCARCINOMA and high-grade LYMPHOMA. BIRC5 Protein,Baculoviral IAP Repeat-containing Protein 5,Baculoviral IAP Repeat containing Protein 5
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D013274 Stomach Neoplasms Tumors or cancer of the STOMACH. Cancer of Stomach,Gastric Cancer,Gastric Neoplasms,Stomach Cancer,Cancer of the Stomach,Gastric Cancer, Familial Diffuse,Neoplasms, Gastric,Neoplasms, Stomach,Cancer, Gastric,Cancer, Stomach,Cancers, Gastric,Cancers, Stomach,Gastric Cancers,Gastric Neoplasm,Neoplasm, Gastric,Neoplasm, Stomach,Stomach Cancers,Stomach Neoplasm
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

Shuning Xu, and Danyang Li, and Tianyuan Li, and Lei Qiao, and Ke Li, and Leiming Guo, and Ying Liu
August 2006, Oncology reports,
Shuning Xu, and Danyang Li, and Tianyuan Li, and Lei Qiao, and Ke Li, and Leiming Guo, and Ying Liu
October 2020, Oncology letters,
Shuning Xu, and Danyang Li, and Tianyuan Li, and Lei Qiao, and Ke Li, and Leiming Guo, and Ying Liu
January 2004, Oncogene,
Shuning Xu, and Danyang Li, and Tianyuan Li, and Lei Qiao, and Ke Li, and Leiming Guo, and Ying Liu
December 2018, Cell death discovery,
Shuning Xu, and Danyang Li, and Tianyuan Li, and Lei Qiao, and Ke Li, and Leiming Guo, and Ying Liu
May 2014, The Journal of investigative dermatology,
Shuning Xu, and Danyang Li, and Tianyuan Li, and Lei Qiao, and Ke Li, and Leiming Guo, and Ying Liu
March 2010, Carcinogenesis,
Shuning Xu, and Danyang Li, and Tianyuan Li, and Lei Qiao, and Ke Li, and Leiming Guo, and Ying Liu
September 2014, Marine drugs,
Shuning Xu, and Danyang Li, and Tianyuan Li, and Lei Qiao, and Ke Li, and Leiming Guo, and Ying Liu
May 2008, Clinical cancer research : an official journal of the American Association for Cancer Research,
Shuning Xu, and Danyang Li, and Tianyuan Li, and Lei Qiao, and Ke Li, and Leiming Guo, and Ying Liu
June 2017, Journal of chemotherapy (Florence, Italy),
Shuning Xu, and Danyang Li, and Tianyuan Li, and Lei Qiao, and Ke Li, and Leiming Guo, and Ying Liu
January 2013, Cell death & disease,
Copied contents to your clipboard!