Direct measurement of tubulin and bulk message distributions on polysomes of growing, starved and deciliated Tetrahymena using RNA gel blots of sucrose gradients containing acrylamide. 1988

F J Calzone, and R Callahan, and M A Gorovsky
Department of Biology, University of Rochester, NY 14627.

A method was developed using sucrose gradients containing acrylamide which greatly simplifies the measurement of the polysomal distribution of messages. After centrifugation, the acrylamide was polymerized, forming a "polysome gel". RNA gel blots of polysome gels were used to determine the polysomal distributions of alpha-tubulin and total polyadenylated mRNA in growing, starved (nongrowing) and starved-deciliated Tetrahymena and the number of messages loaded onto polysomes was calculated. These measurements indicated that the translational efficiencies of alpha-tubulin mRNA and total polyadenylated mRNA are largely unaffected when the rates of tubulin and total protein synthesis vary dramatically. Thus, differential regulation of alpha-tubulin mRNA translation initiation does not contribute to the greater than 100-fold induction of tubulin synthesis observed during cilia regeneration and in growing cells. The major translation-level process regulating tubulin synthesis in Tetrahymena appears to be a change in message loading mediated by a non-specific message recruitment or unmasking factor.

UI MeSH Term Description Entries
D011062 Polynucleotide Adenylyltransferase An enzyme that catalyzes the synthesis of polyadenylic acid from ATP. May be due to the action of RNA polymerase (EC 2.7.7.6) or polynucleotide adenylyltransferase (EC 2.7.7.19). EC 2.7.7.19. Poly A Polymerase,Polyadenylate Polymerase,Polyadenylate Synthetase,ATP-RNA Adenylyltransferase,ATP RNA Adenylyltransferase,Adenylyltransferase, ATP-RNA,Adenylyltransferase, Polynucleotide,Polymerase, Poly A,Polymerase, Polyadenylate,Synthetase, Polyadenylate
D011132 Polyribosomes A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Polysomes,Polyribosome,Polysome
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002923 Cilia Populations of thin, motile processes found covering the surface of ciliates (CILIOPHORA) or the free surface of the cells making up ciliated EPITHELIUM. Each cilium arises from a basic granule in the superficial layer of CYTOPLASM. The movement of cilia propels ciliates through the liquid in which they live. The movement of cilia on a ciliated epithelium serves to propel a surface layer of mucus or fluid. (King & Stansfield, A Dictionary of Genetics, 4th ed) Motile Cilia,Motile Cilium,Nodal Cilia,Nodal Cilium,Primary Cilia,Primary Cilium,Cilium,Cilia, Motile,Cilia, Nodal,Cilia, Primary,Cilium, Motile,Cilium, Nodal,Cilium, Primary
D005029 Ethylenediamines Derivatives of ethylenediamine (the structural formula NH2CH2CH2NH2).
D000180 Acrylic Resins Polymers of high molecular weight which are derived from acrylic acid, methacrylic acid or other related compounds and are capable of being molded and then hardened to form useful components. Acrylic Resin,Resin, Acrylic,Resins, Acrylic
D000645 Ammonium Sulfate Sulfuric acid diammonium salt. It is used in CHEMICAL FRACTIONATION of proteins. Sulfate, Ammonium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013768 Tetrahymena A genus of ciliate protozoa commonly used in genetic, cytological, and other research. Tetrahymenas

Related Publications

F J Calzone, and R Callahan, and M A Gorovsky
June 1983, The Journal of biological chemistry,
F J Calzone, and R Callahan, and M A Gorovsky
January 1992, Genetic analysis, techniques and applications,
F J Calzone, and R Callahan, and M A Gorovsky
October 1977, The Journal of cell biology,
F J Calzone, and R Callahan, and M A Gorovsky
August 1969, Biochimica et biophysica acta,
F J Calzone, and R Callahan, and M A Gorovsky
September 1984, Cell and tissue kinetics,
F J Calzone, and R Callahan, and M A Gorovsky
June 1983, Cellular immunology,
F J Calzone, and R Callahan, and M A Gorovsky
February 1974, Analytical biochemistry,
F J Calzone, and R Callahan, and M A Gorovsky
December 1978, Biochimica et biophysica acta,
F J Calzone, and R Callahan, and M A Gorovsky
January 1972, Methods in enzymology,
Copied contents to your clipboard!