Cell density dependent morphological changes in adult rat hepatocytes during primary culture. 1988

T Koji, and P K Nakane, and M Murakoshi, and K Watanabe, and H Terayama
Department of Cell Biology, Tokai University School of Medicine, Kanagawa, Japan.

In order to gain morphological insights about the cell density dependency, hepatocytes cultured at a low cell density (less than about 0.1 X 10(5) nuclei (cm2)-1) and at a high cell density (greater than about 1 X 10(5) nuclei (cm2)-1) were examined ultrastructurally 24 h after plating (just prior to the beginning of DNA synthesis). The results were as follows: (i) glycogen rosettes disappeared completely in low density culture as compared with sections from an intact liver. In contrast, glycogen rosettes were still present in high density culture. (ii) Polysomes seemed increased in low density culture in comparison with those seen in sections from an intact liver and from the high density culture. (iii) In low density culture, the shape of mitochondria deviated from that of hepatocytes in an intact liver and the mitochondria often lost a characteristic close contact with rough endoplasmic reticulum (rough ER). (iv) In low density culture, bundles of filamentous structure were detected, which were not found in an intact liver or high density culture. The following features were found only in high density culture; (v) numerous villous cytoplasmic protrusions developed along the area facing adjacent cells, and seemed to intertwine with each other, and (vi) between the hepatocytes, only abortive junctions were found. These results indicate that the hepatocytes cultured at a low density express most of the characteristics of the hepatocytes in a regenerating liver and the features of the cells cultured at a high density are very similar to those of the hepatocytes in sections from an intact liver.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008858 Microscopy, Phase-Contrast A form of interference microscopy in which variations of the refracting index in the object are converted into variations of intensity in the image. This is achieved by the action of a phase plate. Phase-Contrast Microscopy,Microscopies, Phase-Contrast,Microscopy, Phase Contrast,Phase Contrast Microscopy,Phase-Contrast Microscopies
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

T Koji, and P K Nakane, and M Murakoshi, and K Watanabe, and H Terayama
October 1983, Journal of biochemistry,
T Koji, and P K Nakane, and M Murakoshi, and K Watanabe, and H Terayama
July 1993, Journal of biochemistry,
T Koji, and P K Nakane, and M Murakoshi, and K Watanabe, and H Terayama
August 1993, Biochemical and biophysical research communications,
T Koji, and P K Nakane, and M Murakoshi, and K Watanabe, and H Terayama
January 1992, Developmental neuroscience,
T Koji, and P K Nakane, and M Murakoshi, and K Watanabe, and H Terayama
June 2005, Biochemical pharmacology,
T Koji, and P K Nakane, and M Murakoshi, and K Watanabe, and H Terayama
June 1978, In vitro,
T Koji, and P K Nakane, and M Murakoshi, and K Watanabe, and H Terayama
January 1980, Annals of the New York Academy of Sciences,
T Koji, and P K Nakane, and M Murakoshi, and K Watanabe, and H Terayama
August 1979, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
T Koji, and P K Nakane, and M Murakoshi, and K Watanabe, and H Terayama
August 1984, Archives of biochemistry and biophysics,
T Koji, and P K Nakane, and M Murakoshi, and K Watanabe, and H Terayama
June 1977, Gastroenterology,
Copied contents to your clipboard!