Bipartite promoters and RNA editing of paramyxoviruses and filoviruses. 2019

Philippe le Mercier, and Daniel Kolakofsky
Swiss-Prot Group, Swiss Institute of Bioinformatics, CMU, 1211 Geneva, Switzerland.

A primary property of paramyxovirus bipartite promoters is to ensure that their RNA genomes are imprinted with a hexamer phase via their association with nucleoproteins, in part because this phase as well the editing sequence itself controls mRNA editing. The question then arises whether a similar mechanism operates for filoviruses that also contain bipartite promoters that are governed by the "rule of six," even though these genomes need not, and given Ebola virus biology, cannot always be of hexamer genome length. This review suggests that this is possible and describes how it might operate, and that RNA editing may play a role in Ebola virus genome interconversion that helps the virus adapt to different host environments.

UI MeSH Term Description Entries
D010252 Paramyxoviridae A family of spherical viruses, of the order MONONEGAVIRALES, somewhat larger than the orthomyxoviruses, and containing single-stranded RNA. Subfamilies include PARAMYXOVIRINAE and PNEUMOVIRINAE. Ferlavirus,Ferlaviruses
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D015967 Gene Expression Regulation, Viral Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses. Regulation of Gene Expression, Viral,Viral Gene Expression Regulation,Regulation, Gene Expression, Viral
D016563 Filoviridae A family of RNA viruses, of the order MONONEGAVIRALES, containing filamentous virions. Although they resemble RHABDOVIRIDAE in possessing helical nucleocapsids, Filoviridae differ in the length and degree of branching in their virions. There are two genera: EBOLAVIRUS and MARBURGVIRUS. Filovirus,Filoviruses
D016679 Genome, Viral The complete genetic complement contained in a DNA or RNA molecule in a virus. Viral Genome,Genomes, Viral,Viral Genomes
D017393 RNA Editing A process that changes the nucleotide sequence of mRNA from that of the DNA template encoding it. Some major classes of RNA editing are as follows: 1, the conversion of cytosine to uracil in mRNA; 2, the addition of variable number of guanines at pre-determined sites; and 3, the addition and deletion of uracils, templated by guide-RNAs (RNA, GUIDE, KINETOPLASTIDA). RNA, Messenger, Editing,Editing, RNA,Editings, RNA,RNA Editings

Related Publications

Philippe le Mercier, and Daniel Kolakofsky
January 2022, Frontiers in genetics,
Philippe le Mercier, and Daniel Kolakofsky
January 2014, Advances in experimental medicine and biology,
Philippe le Mercier, and Daniel Kolakofsky
December 1991, Current opinion in cell biology,
Philippe le Mercier, and Daniel Kolakofsky
January 1996, Annual review of neuroscience,
Philippe le Mercier, and Daniel Kolakofsky
January 2007, Molekuliarnaia biologiia,
Copied contents to your clipboard!