Chiral ligand exchange capillary electrochromatography with dual ligands for enantioseparation of D,L-amino acids. 2019

Wenya Feng, and Juan Qiao, and Dan Li, and Li Qi
Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, PR China; College of Chemical and Pharmaceutical, Hebei University of Science and Technology, No. 26 Yuxiang road, Shijiazhuang 050018, PR China.

Utilizing block copolymers as coatings, a protocol of chiral ligand exchange capillary electrochromatography (CLE-CEC) protocol was designed and developed with dual ligands for D,L-amino acids enantioseparation. Four block copolymers including poly maleic anhydride-co-styrene-co-N-methacryloyl-L-histidine methyl ester [P(MAn-St-MAH)], poly maleic anhydride-co-styrene-co-N-methacryloyl-L-lysine methyl ester [P(MAn-St-MAL)], poly maleic anhydride-co-styrene-co-N-methacryloyl-L-phenylalanine methyl ester [P(MAn-St-MAP)] and poly maleic anhydride-co-styrene-co-N-methacryloyl-L-threonine methyl ester [P(MAn-St-MAT)] were synthesized by reversible addition fragmentation chain transfer polymerization reaction. Key factors affecting the enantioresolution were optimized, including the concentration of Zn (II) central ion, pH value of buffer solution and monomers of the block copolymers. The enantioresolution of the proposed CLE-CEC system could be enhanced dramatically by employing P(MAn-St-MAH) as the immobilized chiral ligand and by coordinating the synergistic effect of free ligand in buffer solution. The principle of improved enantioresolution of the CLE-CEC system with dual ligands was discussed. Well enantioseparation was successfully realized with 7 pairs of D,L-amino acids enantiomers baseline separation and 5 pairs part separation. For quantitative analysis of D,L-alanine, a good linearity was established in the range of 9.4 μM to 1.5 mM (r2 = 0.997) with the limits of detection (LODs) 3.7 μM of D-alanine, 2.0 μM for L-alanine, and limits of quantification (LOQs) 9.0 μM for D-alanine and 6.0 μM for L-alanine. The peak area and migration time reproducibility (n = 6) were 4.1% and 3.5% for D-alanine, 3.7% and 3.1% for L-alanine. Further, the enzyme kinetics study of alanine aminotransferase was investigated with the constructed CLE-CEC system.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D004800 Enzymes, Immobilized Enzymes which are immobilized on or in a variety of water-soluble or water-insoluble matrices with little or no loss of their catalytic activity. Since they can be reused continuously, immobilized enzymes have found wide application in the industrial, medical and research fields. Immobilized Enzymes,Enzyme, Immobilized,Immobilized Enzyme
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000410 Alanine Transaminase An enzyme that catalyzes the conversion of L-alanine and 2-oxoglutarate to pyruvate and L-glutamate. (From Enzyme Nomenclature, 1992) EC 2.6.1.2. Alanine Aminotransferase,Glutamic-Pyruvic Transaminase,SGPT,Alanine-2-Oxoglutarate Aminotransferase,Glutamic-Alanine Transaminase,Alanine 2 Oxoglutarate Aminotransferase,Aminotransferase, Alanine,Aminotransferase, Alanine-2-Oxoglutarate,Glutamic Alanine Transaminase,Glutamic Pyruvic Transaminase,Transaminase, Alanine,Transaminase, Glutamic-Alanine,Transaminase, Glutamic-Pyruvic
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D053801 Capillary Electrochromatography A separation technique which combines LIQUID CHROMATOGRAPHY and CAPILLARY ELECTROPHORESIS. Chip Electrochromatography,Electrochromatography, Capillary,Capillary Electrochromatographies,Electrochromatography, Chip
D058105 Polymerization Chemical reaction in which monomeric components are combined to form POLYMERS (e.g., POLYMETHYLMETHACRYLATE). Polymerizations
D058185 Magnetite Nanoparticles Synthesized magnetic particles under 100 nanometers used in many biomedical applications including DRUG DELIVERY SYSTEMS and CONTRAST AGENTS. The particles are usually coated with a variety of polymeric compounds. Magnetite SPIONs,Magnetite Superparamagnetic Iron Oxide Nanoparticles,Superparamagnetic Magnetite Nanoparticles,Magnetite Nanoparticle,Magnetite Nanoparticle, Superparamagnetic,Magnetite Nanoparticles, Superparamagnetic,Magnetite SPION,Nanoparticle, Magnetite,Nanoparticle, Superparamagnetic Magnetite,Nanoparticles, Magnetite,Nanoparticles, Superparamagnetic Magnetite,SPION, Magnetite,SPIONs, Magnetite,Superparamagnetic Magnetite Nanoparticle

Related Publications

Wenya Feng, and Juan Qiao, and Dan Li, and Li Qi
January 2016, Se pu = Chinese journal of chromatography,
Wenya Feng, and Juan Qiao, and Dan Li, and Li Qi
September 2000, Electrophoresis,
Wenya Feng, and Juan Qiao, and Dan Li, and Li Qi
March 2018, Journal of separation science,
Wenya Feng, and Juan Qiao, and Dan Li, and Li Qi
January 2004, Methods in molecular biology (Clifton, N.J.),
Wenya Feng, and Juan Qiao, and Dan Li, and Li Qi
January 2013, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!