Mechanism Underlying the Protective Effect of Selenium on NO-Induced Oxidative Damage in Bovine Mammary Epithelial Cells. 2019

Yongmei Guo, and Xiaoyu Guo, and Sumei Yan, and Boqi Zhang, and Binlin Shi
College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.

This experiment was conducted to investigate the effects and mechanism of selenium (Se) on antioxidant and immune function of bovine mammary epithelial cells (BMEC) damaged by nitric oxide (NO). The third-generation BMEC was randomly divided into eight treatments with six replicates. The BMEC in the control group was cultured in the medium without Se and diethylenetriamine/NO (DETA/NO) for 30 h. For the DETA/NO group and Se protection group BMEC were exposed to different concentrations of Se (0, 10, 20, 50, 100, 150, and 200 nmol/L) for 24 h, followed by treatment with DETA/NO (1000 μmol/L) for 6 h. Compared with the control group, DETA/NO decreased proliferation rate and activity of thioredoxin reductase (TrxR; P < 0.05). Additionally, DETA/NO decreased the gene expression of both nuclear factor-E2-related factor 2 (Nrf2) and TrxR, as well as the protein expression level of TrxR. However, the activity, and expression levels of inducible nitric oxide synthase (iNOS), as well as the concentration and gene expression level of interleukin-1β (IL-1β) and the concentration of NO significantly increased (P < 0.05). The gene expression levels of indexes related to the mitogen-activated protein kinase (MAPK) signaling pathway showed similar changes. Treatment of BMEC with Se significantly reversed DETA/NO-induced changes in a linear or quadratic dose-dependent manner (P < 0.05), with greatest benefit at 50 nmol/L. These data suggests that Se improves the antioxidant function of BMEC, and protects cells from DETA/NO-induced oxidative damage, primarily by enhancing the activity of TrxR and decreasing the concentration of NO through modulation of Nrf2 and MAPK signaling pathways.

UI MeSH Term Description Entries
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous

Related Publications

Yongmei Guo, and Xiaoyu Guo, and Sumei Yan, and Boqi Zhang, and Binlin Shi
January 2022, Oxidative medicine and cellular longevity,
Yongmei Guo, and Xiaoyu Guo, and Sumei Yan, and Boqi Zhang, and Binlin Shi
March 2022, Toxins,
Yongmei Guo, and Xiaoyu Guo, and Sumei Yan, and Boqi Zhang, and Binlin Shi
January 2019, Oxidative medicine and cellular longevity,
Yongmei Guo, and Xiaoyu Guo, and Sumei Yan, and Boqi Zhang, and Binlin Shi
May 2020, Animals : an open access journal from MDPI,
Yongmei Guo, and Xiaoyu Guo, and Sumei Yan, and Boqi Zhang, and Binlin Shi
August 2014, Cell biology international,
Yongmei Guo, and Xiaoyu Guo, and Sumei Yan, and Boqi Zhang, and Binlin Shi
September 2018, Journal of animal science,
Yongmei Guo, and Xiaoyu Guo, and Sumei Yan, and Boqi Zhang, and Binlin Shi
January 2016, Oxidative medicine and cellular longevity,
Yongmei Guo, and Xiaoyu Guo, and Sumei Yan, and Boqi Zhang, and Binlin Shi
November 2018, Journal of dairy science,
Yongmei Guo, and Xiaoyu Guo, and Sumei Yan, and Boqi Zhang, and Binlin Shi
September 2013, [Zhonghua yan ke za zhi] Chinese journal of ophthalmology,
Yongmei Guo, and Xiaoyu Guo, and Sumei Yan, and Boqi Zhang, and Binlin Shi
February 2015, [Zhonghua yan ke za zhi] Chinese journal of ophthalmology,
Copied contents to your clipboard!