Positive and negative regulation of Shh signalling in vertebrate retinal development. 2018

Viviana Gallardo, and Paola Bovolenta
Centro de BiologĂ­a Molecular , CSIC-UAM, Madrid, 28049, Spain.

Cell-to-cell communication is fundamental for embryo development and subsequent tissue homeostasis. This communication is often mediated by a small number of signaling pathways in which a secreted ligand binds to the surface of a target cell, thereby activating signal transduction. In vertebrate neural development, these signaling mechanisms are repeatedly used to obtain different and context-dependent outcomes. Part of the versatility of these communication mechanisms depends on their finely tuned regulation that controls timing, spatial localization, and duration of the signaling. The existence of secreted antagonists, which prevent ligand-receptor interaction, is an efficient mechanism to regulate some of these pathways. The Hedgehog family of signaling proteins, however, activates a pathway that is controlled largely by the positive or negative activity of membrane-bound proteins such as Cdon, Boc, Gas1, or Megalin/LRP2. In this review, we will use the development of the vertebrate retina, from its early specification to neurogenesis, to discuss whether there is an advantage to the use of such regulators, pointing to unresolved or controversial issues.

UI MeSH Term Description Entries
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014714 Vertebrates Animals having a vertebral column, members of the phylum Chordata, subphylum Craniata comprising mammals, birds, reptiles, amphibians, and fishes. Vertebrate
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D047108 Embryonic Development Morphological and physiological development of EMBRYOS. Embryo Development,Embryogenesis,Postimplantation Embryo Development,Preimplantation Embryo Development,Embryonic Programming,Post-implantation Embryo Development,Postnidation Embryo Development,Postnidation Embryo Development, Animal,Pre-implantation Embryo Development,Prenidation Embryo Development, Animal,Development, Embryo,Development, Embryonic,Development, Postnidation Embryo,Embryo Development, Post-implantation,Embryo Development, Postimplantation,Embryo Development, Postnidation,Embryo Development, Pre-implantation,Embryo Development, Preimplantation,Embryonic Developments,Embryonic Programmings,Post implantation Embryo Development,Pre implantation Embryo Development
D053823 Hedgehog Proteins A family of intercellular signaling proteins that play an important role in regulating the development of many TISSUES and organs. Their name derives from the observation of a hedgehog-like appearance in DROSOPHILA embryos with genetic mutations that block their action. Hedgehog Protein,Hedgehog Protein, Vertebrate,Banded Hedgehog Protein,Desert Hedgehog Protein,Indian Hedgehog Protein,Sonic Hedgehog Protein,Vertebrate Hedgehog Protein,Hedgehog Protein, Banded,Hedgehog Protein, Desert,Hedgehog Protein, Indian,Hedgehog Protein, Sonic,Protein, Hedgehog
D055495 Neurogenesis Formation of NEURONS which involves the differentiation and division of STEM CELLS in which one or both of the daughter cells become neurons. Neurogeneses

Related Publications

Viviana Gallardo, and Paola Bovolenta
November 2001, Nature reviews. Genetics,
Viviana Gallardo, and Paola Bovolenta
October 2002, Developmental biology,
Viviana Gallardo, and Paola Bovolenta
January 2000, Nature,
Viviana Gallardo, and Paola Bovolenta
April 1993, The Journal of biological chemistry,
Viviana Gallardo, and Paola Bovolenta
July 1999, Cellular and molecular biology (Noisy-le-Grand, France),
Viviana Gallardo, and Paola Bovolenta
January 2013, Developmental biology,
Viviana Gallardo, and Paola Bovolenta
January 2009, The Journal of international medical research,
Viviana Gallardo, and Paola Bovolenta
February 2006, Nature reviews. Neuroscience,
Viviana Gallardo, and Paola Bovolenta
November 2005, Journal of cellular biochemistry,
Copied contents to your clipboard!