Contrast-dependent phase sensitivity in area MT of macaque visual cortex. 2019

Shaun L Cloherty, and Michael R Ibbotson
National Vision Research Institute, Australian College of Optometry, Carlton.

In primate visual cortex (V1), about half the neurons are sensitive to the spatial phases of grating stimuli and generate highly modulated responses to drifting gratings (simple cells). The remaining cells show far less phase sensitivity and relatively unmodulated responses to moving gratings (complex cells). In the second visual area (V2) and the motion processing area MT (or V5), the majority of cells have unmodulated responses to drifting gratings - they are phase invariant. At just-detectable contrasts, 44% of V1 complex cells show highly modulated responses, but this contrast-dependent phase sensitivity is found in only 7% of V2 complex cells. We recorded from 149 cells in macaque MT - 142 classed as complex cells at high contrast. Approximately 14% (20/142) of MT complex cells showed significantly modulated responses to drifting gratings at just-detectable contrasts. A general feature of MT cells is that they can be divided into pattern and component selective types, but we found no correlation between this classification and contrast-dependent phase sensitivity. Phase sensitivity in MT is discussed in relation to MT's input structure.

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D009039 Motion Perception The real or apparent movement of objects through the visual field. Movement Perception,Perception, Motion,Perception, Movement
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D015350 Contrast Sensitivity The ability to detect sharp boundaries (stimuli) and to detect slight changes in luminance at regions without distinct contours. Psychophysical measurements of this visual function are used to evaluate VISUAL ACUITY and to detect eye disease. Visual Contrast Sensitivity,Sensitivity, Contrast,Sensitivity, Visual Contrast

Related Publications

Shaun L Cloherty, and Michael R Ibbotson
June 1986, The Journal of comparative neurology,
Shaun L Cloherty, and Michael R Ibbotson
January 1987, Vision research,
Shaun L Cloherty, and Michael R Ibbotson
June 1986, Journal of neurophysiology,
Shaun L Cloherty, and Michael R Ibbotson
August 2003, Neuron,
Shaun L Cloherty, and Michael R Ibbotson
March 2005, Journal of neurophysiology,
Shaun L Cloherty, and Michael R Ibbotson
December 2002, Journal of neurophysiology,
Shaun L Cloherty, and Michael R Ibbotson
March 2018, Nature communications,
Shaun L Cloherty, and Michael R Ibbotson
June 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!