LabCaS for Ranking Potential Calpain Substrate Cleavage Sites from Amino Acid Sequence. 2019

Yong-Xian Fan, and Xiaoyong Pan, and Yang Zhang, and Hong-Bin Shen
Guangxi Key Laboratory of Trusted Software, Guangxi Colleges and Universities Key Laboratory of Intelligent Processing of Computer Images and Graphics, Guilin University of Electronic Technology, Guilin, China.

Calpains are a family of Ca2+-dependent cysteine proteases involved in many important biological processes, where they selectively cleave relevant substrates at specific cleavage sites to regulate the function of the substrate proteins. Presently, our knowledge about the function of calpains and the mechanism of substrate cleavage is still limited due to the fact that the experimental determination and validation on calpain bindings are usually laborious and expensive. This chapter describes LabCaS, an algorithm that is designed for predicting the calpain substrate cleavage sites from amino acid sequences. LabCaS is built on a conditional random field (CRF) statistic model, which trains the cleavage site prediction on multiple features of amino acid residue preference, solvent accessibility information, pair-wise alignment similarity score, secondary structure propensity, and physical-chemistry properties. Large-scale benchmark tests have shown that LabCaS can achieve a reliable recognition of the cleavage sites for most calpain proteins with an average AUC score of 0.862. Due to the fast speed and convenience of use, the protocol should find its usefulness in large-scale calpain-based function annotations of the newly sequenced proteins. The online web server of LabCaS is freely available at http://www.csbio.sjtu.edu.cn/bioinf/LabCaS .

UI MeSH Term Description Entries
D008967 Molecular Biology A discipline concerned with studying biological phenomena in terms of the chemical and physical interactions of molecules. Biochemical Genetics,Biology, Molecular,Genetics, Biochemical,Genetics, Molecular,Molecular Genetics,Biochemical Genetic,Genetic, Biochemical,Genetic, Molecular,Molecular Genetic
D002154 Calpain Cysteine proteinase found in many tissues. Hydrolyzes a variety of endogenous proteins including NEUROPEPTIDES; CYTOSKELETAL PROTEINS; proteins from SMOOTH MUSCLE; CARDIAC MUSCLE; liver; platelets; and erythrocytes. Two subclasses having high and low calcium sensitivity are known. Removes Z-discs and M-lines from myofibrils. Activates phosphorylase kinase and cyclic nucleotide-independent protein kinase. This enzyme was formerly listed as EC 3.4.22.4. Calcium-Activated Neutral Protease,Calcium-Dependent Neutral Proteinase,Ca2+-Activated Protease,Calcium-Activated Neutral Proteinase,Calcium-Activated Protease,Calcium-Dependent Neutral Protease,Calpain I,Calpain II,Desminase,Ca2+ Activated Protease,Calcium Activated Neutral Protease,Calcium Activated Neutral Proteinase,Calcium Activated Protease,Calcium Dependent Neutral Protease,Calcium Dependent Neutral Proteinase,Neutral Protease, Calcium-Activated,Neutral Protease, Calcium-Dependent,Neutral Proteinase, Calcium-Activated,Neutral Proteinase, Calcium-Dependent,Protease, Ca2+-Activated,Protease, Calcium-Activated,Protease, Calcium-Activated Neutral,Protease, Calcium-Dependent Neutral,Proteinase, Calcium-Activated Neutral,Proteinase, Calcium-Dependent Neutral
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D015233 Models, Statistical Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model
D059748 Proteolysis Cleavage of proteins into smaller peptides or amino acids either by PROTEASES or non-enzymatically (e.g., Hydrolysis). It does not include Protein Processing, Post-Translational. Protein Degradation,Protein Digestion,Degradation, Protein,Degradations, Protein,Digestion, Protein,Digestions, Protein,Protein Degradations,Protein Digestions,Proteolyses

Related Publications

Yong-Xian Fan, and Xiaoyong Pan, and Yang Zhang, and Hong-Bin Shen
April 2013, Proteins,
Yong-Xian Fan, and Xiaoyong Pan, and Yang Zhang, and Hong-Bin Shen
August 2008, Journal of bioinformatics and computational biology,
Yong-Xian Fan, and Xiaoyong Pan, and Yang Zhang, and Hong-Bin Shen
October 2006, BMC bioinformatics,
Yong-Xian Fan, and Xiaoyong Pan, and Yang Zhang, and Hong-Bin Shen
June 1983, European journal of biochemistry,
Yong-Xian Fan, and Xiaoyong Pan, and Yang Zhang, and Hong-Bin Shen
April 2005, Journal of virology,
Yong-Xian Fan, and Xiaoyong Pan, and Yang Zhang, and Hong-Bin Shen
May 2006, BMC bioinformatics,
Yong-Xian Fan, and Xiaoyong Pan, and Yang Zhang, and Hong-Bin Shen
December 2015, Data in brief,
Yong-Xian Fan, and Xiaoyong Pan, and Yang Zhang, and Hong-Bin Shen
January 1987, Advances in experimental medicine and biology,
Yong-Xian Fan, and Xiaoyong Pan, and Yang Zhang, and Hong-Bin Shen
August 2006, RNA (New York, N.Y.),
Yong-Xian Fan, and Xiaoyong Pan, and Yang Zhang, and Hong-Bin Shen
April 1996, FEBS letters,
Copied contents to your clipboard!