Insulin ameliorates pulmonary edema through the upregulation of epithelial sodium channel via the PI3K/SGK1 pathway in mice with lipopolysaccharide‑induced lung injury. 2019

Wang Deng, and Chang-Yi Li, and Jin Tong, and Jing He, and Yan Zhao, and Dao-Xin Wang
Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China.

Epithelial sodium channel (ENaC) provides the driving force for the removal of edema from the alveolar spaces in acute lung injury (ALI). Our previous study reported that insulin increased the expression of α‑ENaC, possibly via the serum/glucocorticoid‑inducible kinase‑1 (SGK1) pathway in ALI; however, the upstream regulator of SGK1 activity remains unclear. In the current study, C3H/HeN mice were subjected to lipopolysaccharide (LPS)‑induced lung injury without hyperglycemia. Exogenous insulin was administered intravenously using a micro‑osmotic pump, and intratracheal delivery of SGK1 small interfering RNA (siRNA) was performed. Furthermore, alveolar epithelial type II cells transfected with phosphatidylinositol 3‑kinase (PI3K) siRNA or SGK1 siRNA were incubated with insulin. Insulin protected the pulmonary epithelial barrier, reduced the apoptosis of alveolar epithelial cells, attenuated pulmonary edema, improved alveolar fluid clearance, and increased the expression levels of α‑, β‑ and γ‑ENaC in mice. In addition, in alveolar epithelial cells, insulin increased the expression levels of α‑, β‑ and γ‑ENaC, as well as the level of phosphorylated SGK1, which were then inhibited by the selective targeting of PI3K or SGK1 by siRNA. Taken together, the results of the present study demonstrated that insulin protected the lung epithelium and attenuated pulmonary edema through the upregulation of ENaC via the PI3K/SGK1 pathway in LPS‑induced lung injury.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011654 Pulmonary Edema Excessive accumulation of extravascular fluid in the lung, an indication of a serious underlying disease or disorder. Pulmonary edema prevents efficient PULMONARY GAS EXCHANGE in the PULMONARY ALVEOLI, and can be life-threatening. Wet Lung,Edema, Pulmonary,Edemas, Pulmonary,Pulmonary Edemas,Lung, Wet,Lungs, Wet,Wet Lungs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017346 Protein Serine-Threonine Kinases A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors. Protein-Serine-Threonine Kinases,Serine-Threonine Protein Kinase,Serine-Threonine Protein Kinases,Protein-Serine Kinase,Protein-Serine-Threonine Kinase,Protein-Threonine Kinase,Serine Kinase,Serine-Threonine Kinase,Serine-Threonine Kinases,Threonine Kinase,Kinase, Protein-Serine,Kinase, Protein-Serine-Threonine,Kinase, Protein-Threonine,Kinase, Serine-Threonine,Kinases, Protein Serine-Threonine,Kinases, Protein-Serine-Threonine,Kinases, Serine-Threonine,Protein Kinase, Serine-Threonine,Protein Kinases, Serine-Threonine,Protein Serine Kinase,Protein Serine Threonine Kinase,Protein Serine Threonine Kinases,Protein Threonine Kinase,Serine Threonine Kinase,Serine Threonine Kinases,Serine Threonine Protein Kinase,Serine Threonine Protein Kinases
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D053503 Epithelial Sodium Channels Sodium channels found on salt-reabsorbing EPITHELIAL CELLS that line the distal NEPHRON; the distal COLON; SALIVARY DUCTS; SWEAT GLANDS; and the LUNG. They are AMILORIDE-sensitive and play a critical role in the control of sodium balance, BLOOD VOLUME, and BLOOD PRESSURE. Epithelial Sodium Channel,Epithelial Sodium Ion Channels,ENaC (Epithelial Na+ Channel),ENaC alpha,ENaC beta,ENaC delta,ENaC gamma,Epithelial Amiloride-Sensitive Sodium Channel,Epithelial Sodium Channel, alpha Subunit,Epithelial Sodium Channel, beta Subunit,Epithelial Sodium Channel, delta Subunit,Epithelial Sodium Channel, gamma Subunit,SCNN1 alpha Subunit,SCNN1 beta Subunit,SCNN1 delta Subunit,SCNN1 gamma Subunit,Sodium Channel, Nonvoltage-gated 1 Protein, alpha Subunit,Sodium Channel, Nonvoltage-gated 1 Protein, beta Subunit,Sodium Channel, Nonvoltage-gated 1 Protein, delta Subunit,Sodium Channel, Nonvoltage-gated 1 Protein, gamma Subunit,Epithelial Amiloride Sensitive Sodium Channel,Sodium Channel, Epithelial,Sodium Channels, Epithelial,alpha Subunit, SCNN1

Related Publications

Wang Deng, and Chang-Yi Li, and Jin Tong, and Jing He, and Yan Zhao, and Dao-Xin Wang
June 2021, Molecular and cellular probes,
Wang Deng, and Chang-Yi Li, and Jin Tong, and Jing He, and Yan Zhao, and Dao-Xin Wang
January 2020, Evidence-based complementary and alternative medicine : eCAM,
Wang Deng, and Chang-Yi Li, and Jin Tong, and Jing He, and Yan Zhao, and Dao-Xin Wang
April 2021, Immunologic research,
Wang Deng, and Chang-Yi Li, and Jin Tong, and Jing He, and Yan Zhao, and Dao-Xin Wang
December 2014, Respiratory research,
Wang Deng, and Chang-Yi Li, and Jin Tong, and Jing He, and Yan Zhao, and Dao-Xin Wang
November 2023, Immunological investigations,
Wang Deng, and Chang-Yi Li, and Jin Tong, and Jing He, and Yan Zhao, and Dao-Xin Wang
April 2014, Journal of immunology (Baltimore, Md. : 1950),
Wang Deng, and Chang-Yi Li, and Jin Tong, and Jing He, and Yan Zhao, and Dao-Xin Wang
January 2022, Frontiers in pharmacology,
Wang Deng, and Chang-Yi Li, and Jin Tong, and Jing He, and Yan Zhao, and Dao-Xin Wang
August 2012, Injury,
Wang Deng, and Chang-Yi Li, and Jin Tong, and Jing He, and Yan Zhao, and Dao-Xin Wang
January 2020, Free radical biology & medicine,
Copied contents to your clipboard!