Immunofluorescent staining of mammalian nuclei and chromosomes with a monoclonal antibody to triplex DNA. 1988

G D Burkholder, and L J Latimer, and J S Lee
Department of Anatomy, College of Medicine, University of Saskatchewan, Saskatoon, Canada.

Triplex DNA is an unusual conformation of DNA formed when two pyrimidine nucleotide strands share a common purine strand. A monoclonal antibody, demonstrated by numerous criteria to be specific for triplex DNA, was used to investigate the presence and distribution of this unique DNA configuration in nuclei and chromosomes of mouse LM cells and human lymphocytes. Indirect immunofluorescence microscopy revealed that constitutive heterochromatin in acetic-methanol fixed mouse nuclei was usually, but not always immunofluorescent, suggesting possible cell cycle related variations in the amount of triplex DNA or its accessibility in this condensed chromatin. In fixed mouse and human chromosomes, there was a positive correlation between immunofluorescent staining patterns, Hoechst 33258 banding, and G- and/or C-banding patterns. Unfixed, isolated mouse chromosomes also reacted positively with the antibody, particularly when they were gently decondensed by exposure to low ionic conditions at neutral pH. This result indicates that fixation is not mandatory for antibody staining, suggesting that some mammalian chromosomal DNA may be naturally organized in a triplex configuration. However, there is a possibility that fixation may facilitate the formation of additional triplex DNA complexes in potential sequences or expose previously inaccessible triplex DNA. The precise correspondence between the immunofluorescent patterns produced by anti-triplex DNA antibodies and G- and C-bands known to represent regions of chromatin condensation, suggests a potential role of triplex DNA in chromosome structure and regional chromatin condensation.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002871 Chromosome Banding Staining of bands, or chromosome segments, allowing the precise identification of individual chromosomes or parts of chromosomes. Applications include the determination of chromosome rearrangements in malformation syndromes and cancer, the chemistry of chromosome segments, chromosome changes during evolution, and, in conjunction with cell hybridization studies, chromosome mapping. Banding, Chromosome,Bandings, Chromosome,Chromosome Bandings
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

G D Burkholder, and L J Latimer, and J S Lee
March 1994, The Journal of biological chemistry,
G D Burkholder, and L J Latimer, and J S Lee
January 1982, Chromosoma,
G D Burkholder, and L J Latimer, and J S Lee
April 1992, Journal of clinical microbiology,
G D Burkholder, and L J Latimer, and J S Lee
July 1985, Japanese journal of cancer research : Gann,
G D Burkholder, and L J Latimer, and J S Lee
October 1987, Nihon Kyobu Shikkan Gakkai zasshi,
G D Burkholder, and L J Latimer, and J S Lee
July 1984, Cell biochemistry and function,
G D Burkholder, and L J Latimer, and J S Lee
December 1987, Kansenshogaku zasshi. The Journal of the Japanese Association for Infectious Diseases,
G D Burkholder, and L J Latimer, and J S Lee
January 2004, Methods in enzymology,
G D Burkholder, and L J Latimer, and J S Lee
May 1965, Histochemie. Histochemistry. Histochimie,
G D Burkholder, and L J Latimer, and J S Lee
March 1961, Bacteriological reviews,
Copied contents to your clipboard!