Mutational analysis of the GAL4-encoded transcriptional activator protein of Saccharomyces cerevisiae. 1988

M Johnston, and J Dover
Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110.

The GAL4 protein of Saccharomyces cerevisiae binds to DNA upstream of each of six genes and stimulates their transcription. To locate regions of the protein responsible for these processes, we identified and characterized 88 gal4 mutations selected in vivo to reduce the ability to GAL4 protein to activate transcription. These mutations alter two regions of GAL4 protein: the DNA binding domain, and the transcription activation domain. Some mutations in the DNA binding domain that abolish the ability of GAL4 protein to bind to DNA in vitro change amino acid residues proposed to form a zinc finger, confirming that this structure is indeed involved in DNA binding. Four different amino acid changes in the zinc finger appear to reduce (but not abolish) the affinity of GAL4 protein for zinc ions, thereby identifying some of the amino acids involved in forming the zinc-binding structure. Several other mutations that abolish the DNA binding activity of the protein alter the 20 amino acids adjacent to the zinc finger, suggesting that these residues are part of the DNA binding domain. Two amino acid changes in the region adjacent to the zinc finger also appear to affect the ability of GAL4 protein to bind zinc ions, suggesting that this region of the protein can influence the structure of the zinc binding domain. The transcription activation domain of GAL4 protein is remarkably resistant to single amino acid changes: only 4 of the 42 mutations that alter this region of the protein are of the missense type. This observation is consistent with other lines of evidence that GAL4 protein possesses multiple transcription activation domains with unusual sequence flexibility.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

M Johnston, and J Dover
February 1984, Molecular and cellular biology,
M Johnston, and J Dover
January 1996, Molecular biology of the cell,
M Johnston, and J Dover
January 1995, The Journal of biological chemistry,
M Johnston, and J Dover
August 1988, Nature,
Copied contents to your clipboard!