Molecular interactions in the control region of the carAB operon encoding Escherichia coli carbamoylphosphate synthetase. 1988

D Charlier, and G Weyens, and M Roovers, and J Piette, and C Bocquet, and A Piérard, and N Glansdorff
Research Institute of the CERIA-COOVI, Brussels, Belgium.

The control region of the carAB operon, encoding carbamoylphosphate synthetase, comprises two tandem promoters (P1, upstream and P2, downstream) located 67 base-pairs apart and repressed respectively by pyrimidines and arginine. RNA polymerase and pure arginine repressor bind to the P2 region in mutually exclusive ways. Repressor protects the two adjacent palindromic ARG boxes overlapping P2 against DNase I. Binding of RNA polymerase to P1 is abnormal; the region protected against DNase I is shifted upstream by about 20 nucleotides with respect to the position expected from the transcription startpoint. This pattern is not due to interference with polymerase binding at P2, since it is observed also in the presence of repressor and on an isolated P1 region. Binding of RNA polymerase is relatively weak and heparin-sensitive suggesting that, in vivo, an ancillary factor is required to promote the formation of an open complex. S1 nuclease mapping experiments show that the simultaneous presence of pyrimidines and arginine represses the downstream arginine-specific promoter (P2) more efficiently than arginine alone. This effect is not due to a direct regulatory interaction between pyrimidines and P2, since it is not observed when P1 is inactivated by insertion mutations or partial deletion. It has been shown that transcription initiated at P1 can proceed even when arginine represses P2. We therefore suggest that P2 operator-arginine repressor complex is destabilized by RNA polymerase binding at P1 or transcription from P1. We describe a novel technique to select for expression-down mutants in a lac fusion context.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002223 Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing) An enzyme that catalyzes the formation of carbamoyl phosphate from ATP, carbon dioxide, and glutamine. This enzyme is important in the de novo biosynthesis of pyrimidines. EC 6.3.5.5. Carbamyl Phosphate Synthase (Glutamine),Carbamoyl-Phosphate Synthase (Glutamine),Carbamoylphosphate Synthetase II,Carbamyl Phosphate Synthase II,Carbamyl-Phosphate Synthase (Glutamine),Synthetase II, Carbamoylphosphate
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

D Charlier, and G Weyens, and M Roovers, and J Piette, and C Bocquet, and A Piérard, and N Glansdorff
July 1984, Proceedings of the National Academy of Sciences of the United States of America,
D Charlier, and G Weyens, and M Roovers, and J Piette, and C Bocquet, and A Piérard, and N Glansdorff
June 2003, Extremophiles : life under extreme conditions,
D Charlier, and G Weyens, and M Roovers, and J Piette, and C Bocquet, and A Piérard, and N Glansdorff
December 1988, Journal of molecular biology,
D Charlier, and G Weyens, and M Roovers, and J Piette, and C Bocquet, and A Piérard, and N Glansdorff
February 1975, Archives internationales de physiologie et de biochimie,
D Charlier, and G Weyens, and M Roovers, and J Piette, and C Bocquet, and A Piérard, and N Glansdorff
February 1985, Journal of molecular biology,
D Charlier, and G Weyens, and M Roovers, and J Piette, and C Bocquet, and A Piérard, and N Glansdorff
September 1995, Molecular microbiology,
D Charlier, and G Weyens, and M Roovers, and J Piette, and C Bocquet, and A Piérard, and N Glansdorff
July 1985, European journal of biochemistry,
D Charlier, and G Weyens, and M Roovers, and J Piette, and C Bocquet, and A Piérard, and N Glansdorff
January 2005, Communications in agricultural and applied biological sciences,
D Charlier, and G Weyens, and M Roovers, and J Piette, and C Bocquet, and A Piérard, and N Glansdorff
February 2004, Journal of molecular biology,
Copied contents to your clipboard!