Application of the Abbott TDx lidocaine, phenytoin, and phenobarbital assays to postmortem blood specimens. 1988

Y H Caplan, and B Levine
University of Maryland, Department of Pathology, Baltimore 21201.

The TDx fluorescence polarization immunoassays (FPIA) for some therapeutically monitored drugs (lidocaine, phenytoin, phenobarbital) were applied to the analysis of postmortem blood specimens. After an initial calibration using the appropriate TDx calibrators, blood bank blood fortified with known amounts of drug was analyzed by FPIA. Postmortem blood specimens containing the drugs, postmortem specimens not containing the drugs of interest (negatives), and randomly selected postmortem blood specimens fortified with known amounts of the drugs were analyzed by the FPIA and reference gas chromatographic (GC) methods. Concentrations determined in blood bank and postmortem blood specimens showed excellent correlation between the two methods and produced lines with slopes ranging from 0.98 to 1.08. In each case the correlation coefficient was greater than 0.97. Analysis of all negative specimens produced FPIA values below the limit of quantitation of the reference GC assay.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D008012 Lidocaine A local anesthetic and cardiac depressant used as an antiarrhythmia agent. Its actions are more intense and its effects more prolonged than those of PROCAINE but its duration of action is shorter than that of BUPIVACAINE or PRILOCAINE. Lignocaine,2-(Diethylamino)-N-(2,6-Dimethylphenyl)Acetamide,2-2EtN-2MePhAcN,Dalcaine,Lidocaine Carbonate,Lidocaine Carbonate (2:1),Lidocaine Hydrocarbonate,Lidocaine Hydrochloride,Lidocaine Monoacetate,Lidocaine Monohydrochloride,Lidocaine Monohydrochloride, Monohydrate,Lidocaine Sulfate (1:1),Octocaine,Xylesthesin,Xylocaine,Xylocitin,Xyloneural
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D010672 Phenytoin An anticonvulsant that is used to treat a wide variety of seizures. It is also an anti-arrhythmic and a muscle relaxant. The mechanism of therapeutic action is not clear, although several cellular actions have been described including effects on ion channels, active transport, and general membrane stabilization. The mechanism of its muscle relaxant effect appears to involve a reduction in the sensitivity of muscle spindles to stretch. Phenytoin has been proposed for several other therapeutic uses, but its use has been limited by its many adverse effects and interactions with other drugs. Diphenylhydantoin,Fenitoin,Phenhydan,5,5-Diphenylhydantoin,5,5-diphenylimidazolidine-2,4-dione,Antisacer,Difenin,Dihydan,Dilantin,Epamin,Epanutin,Hydantol,Phenytoin Sodium,Sodium Diphenylhydantoinate,Diphenylhydantoinate, Sodium
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005554 Forensic Medicine The application of medical knowledge to questions of law. Legal Medicine,Medicine, Forensic,Medicine, Legal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001344 Autopsy Postmortem examination of the body. Autopsies,Post-Mortem Examination,Postmortem Examination,Examination, Post-Mortem,Examination, Postmortem,Examinations, Post-Mortem,Examinations, Postmortem,Post Mortem Examination,Post-Mortem Examinations,Postmortem Examinations

Related Publications

Y H Caplan, and B Levine
January 1987, Journal of analytical toxicology,
Y H Caplan, and B Levine
November 1983, American journal of clinical pathology,
Y H Caplan, and B Levine
January 1992, Journal of analytical toxicology,
Y H Caplan, and B Levine
January 2014, Laboratory medicine,
Y H Caplan, and B Levine
November 1983, Clinical chemistry,
Y H Caplan, and B Levine
November 1993, Annals of clinical biochemistry,
Y H Caplan, and B Levine
January 1989, Journal of analytical toxicology,
Y H Caplan, and B Levine
September 1991, Clinical chemistry,
Y H Caplan, and B Levine
June 1992, Clinical chemistry,
Copied contents to your clipboard!