Stimulation of prostacyclin release from aortic smooth muscle cells by purine and pyrimidine nucleotides. 1988

D Demolle, and C Lagneau, and J M Boeynaems
Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Belgium.

ATP and ATP gamma S(10-100 microM) stimulated the release of prostacyclin (PGI2) from bovine aortic smooth muscle cells. This effect was reproduced by UTP, ITP and partially by GTP. ADP and ADP beta S, the P2X-selective agonist alpha, beta-methylene ATP (APCPP), AMP and adenosine were all inactive. This effect of ATP gamma S was not inhibited by Reactive Blue 2, an antagonist of P2Y receptors. The stimulation of PGI2 production in aortic smooth muscle cells by these nucleotides thus seems to involve receptors distinct from both P2X and P2Y subtypes, which are responsible for smooth muscle contraction and PGI2 release from endothelial cells, respectively.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D011983 Receptors, Purinergic Cell surface proteins that bind PURINES with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized classes of purinergic receptors in mammals are the P1 receptors, which prefer ADENOSINE, and the P2 receptors, which prefer ATP or ADP. Methyladenine Receptors,Purine Receptors,Purinergic Receptor,Purinergic Receptors,Purinoceptors,Purine Receptor,Purinoceptor,Receptors, Methyladenine,Receptors, Purine,Receptor, Purine,Receptor, Purinergic
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015121 6-Ketoprostaglandin F1 alpha The physiologically active and stable hydrolysis product of EPOPROSTENOL. Found in nearly all mammalian tissue. 6-Keto-PGF1 alpha,6-Oxo-PGF1 alpha,6-Oxoprostaglandin F1 alpha,6 Ketoprostaglandin F1 alpha,6 Keto PGF1 alpha,6 Oxo PGF1 alpha,6 Oxoprostaglandin F1 alpha,F1 alpha, 6-Ketoprostaglandin,F1 alpha, 6-Oxoprostaglandin,alpha, 6-Keto-PGF1,alpha, 6-Ketoprostaglandin F1,alpha, 6-Oxo-PGF1,alpha, 6-Oxoprostaglandin F1

Related Publications

D Demolle, and C Lagneau, and J M Boeynaems
September 1973, Nature: New biology,
D Demolle, and C Lagneau, and J M Boeynaems
January 1984, VASA. Zeitschrift fur Gefasskrankheiten,
D Demolle, and C Lagneau, and J M Boeynaems
February 1993, Glia,
D Demolle, and C Lagneau, and J M Boeynaems
July 1980, Biochimica et biophysica acta,
D Demolle, and C Lagneau, and J M Boeynaems
December 1980, Biochimica et biophysica acta,
D Demolle, and C Lagneau, and J M Boeynaems
July 1996, General pharmacology,
D Demolle, and C Lagneau, and J M Boeynaems
January 1988, The International journal of biochemistry,
D Demolle, and C Lagneau, and J M Boeynaems
July 1986, Prostaglandins,
D Demolle, and C Lagneau, and J M Boeynaems
May 1981, Atherosclerosis,
D Demolle, and C Lagneau, and J M Boeynaems
July 1981, Atherosclerosis,
Copied contents to your clipboard!