A high-throughput screen identifies small molecule modulators of alternative splicing by targeting RNA G-quadruplexes. 2019

Jing Zhang, and Samuel E Harvey, and Chonghui Cheng
Lester & Sue Smith Breast Center, Department of Molecular & Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.

RNA secondary structures have been increasingly recognized to play an important regulatory role in post-transcriptional gene regulation. We recently showed that RNA G-quadruplexes, which serve as cis-elements to recruit splicing factors, play a critical role in regulating alternative splicing during the epithelial-mesenchymal transition. In this study, we performed a high-throughput screen using a dual-color splicing reporter to identify chemical compounds capable of regulating G-quadruplex-dependent alternative splicing. We identify emetine and its analog cephaeline as small molecules that disrupt RNA G-quadruplexes, resulting in inhibition of G-quadruplex-dependent alternative splicing. Transcriptome analysis reveals that emetine globally regulates alternative splicing, including splicing of variable exons that contain splice site-proximal G-quadruplexes. Our data suggest the use of emetine and cephaeline for investigating mechanisms of G-quadruplex-associated alternative splicing.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D004640 Emetine The principal alkaloid of ipecac, from the ground roots of Uragoga (or Cephaelis) ipecacuanha or U. acuminata, of the Rubiaceae. It is used as an amebicide in many different preparations and may cause serious cardiac, hepatic, or renal damage and violent diarrhea and vomiting. Emetine inhibits protein synthesis in EUKARYOTIC CELLS but not PROKARYOTIC CELLS. Ipecine,Methylcephaeline,Emetine Dihydrochloride,Emetine Hydrochloride,Dihydrochloride, Emetine,Hydrochloride, Emetine
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072260 RNA Splicing Factors RNA-binding proteins that facilitate or inhibit RNA SPLICING. Splicing Factor,Splicing Factors,Factor, Splicing,Factors, RNA Splicing,Factors, Splicing,Splicing Factors, RNA
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA
D017398 Alternative Splicing A process whereby multiple RNA transcripts are generated from a single gene. Alternative splicing involves the splicing together of other possible sets of EXONS during the processing of some, but not all, transcripts of the gene. Thus a particular exon may be connected to any one of several alternative exons to form a mature RNA. The alternative forms of mature MESSENGER RNA produce PROTEIN ISOFORMS in which one part of the isoforms is common while the other parts are different. RNA Splicing, Alternative,Splicing, Alternative,Alternate Splicing,Nested Transcripts,Alternate Splicings,Alternative RNA Splicing,Alternative RNA Splicings,Alternative Splicings,Nested Transcript,RNA Splicings, Alternative,Splicing, Alternate,Splicing, Alternative RNA,Splicings, Alternate,Splicings, Alternative,Splicings, Alternative RNA,Transcript, Nested,Transcripts, Nested
D054852 Small Molecule Libraries Large collections of small molecules (molecular weight about 600 or less), of similar or diverse nature which are used for high-throughput screening analysis of the gene function, protein interaction, cellular processing, biochemical pathways, or other chemical interactions. It includes virtual libraries. Chemical Libraries,Molecular Libraries, Small,Libraries, Chemical,Libraries, Small Molecular,Libraries, Small Molecule,Molecule Libraries, Small,Small Molecular Libraries
D054856 G-Quadruplexes Higher-order DNA and RNA structures formed from guanine-rich sequences. They are formed around a core of at least 2 stacked tetrads of hydrogen-bonded GUANINE bases. They can be formed from one two or four separate strands of DNA (or RNA) and can display a wide variety of topologies, which are a consequence of various combinations of strand direction, length, and sequence. (From Nucleic Acids Res. 2006;34(19):5402-15) DNA G-Quadruplexes,DNA, Quadruplex,G-Quadruplexes, DNA,G-Quadruplexes, RNA,Guanine-Quadruplexes,Guanine-Quartets,Guanine-Tetrads,Quadruplex DNA,RNA, G-Quadruplexes,Tetraplex DNA,DNA G Quadruplexes,DNA, Tetraplex,G Quadruplexes,G Quadruplexes, DNA,G Quadruplexes, RNA,G-Quadruplexes RNA,G-Quadruplexes RNAs,Guanine Quadruplexes,Guanine Quartets,Guanine Tetrads,Guanine-Quartet,Guanine-Tetrad,RNA G-Quadruplexes,RNA, G Quadruplexes,RNAs, G-Quadruplexes

Related Publications

Jing Zhang, and Samuel E Harvey, and Chonghui Cheng
March 2020, iScience,
Jing Zhang, and Samuel E Harvey, and Chonghui Cheng
August 2020, iScience,
Jing Zhang, and Samuel E Harvey, and Chonghui Cheng
February 2013, Journal of biomolecular screening,
Jing Zhang, and Samuel E Harvey, and Chonghui Cheng
August 2008, Proceedings of the National Academy of Sciences of the United States of America,
Jing Zhang, and Samuel E Harvey, and Chonghui Cheng
December 2015, Tuberculosis (Edinburgh, Scotland),
Jing Zhang, and Samuel E Harvey, and Chonghui Cheng
May 2022, Nature communications,
Jing Zhang, and Samuel E Harvey, and Chonghui Cheng
March 2016, Proceedings of the National Academy of Sciences of the United States of America,
Jing Zhang, and Samuel E Harvey, and Chonghui Cheng
March 2016, Methods (San Diego, Calif.),
Jing Zhang, and Samuel E Harvey, and Chonghui Cheng
September 2014, The Journal of biological chemistry,
Jing Zhang, and Samuel E Harvey, and Chonghui Cheng
November 2023, Biochimie,
Copied contents to your clipboard!