A review of recent observations concerning the synaptic organization of the basilar pontine nuclei. 1988

G A Mihailoff, and R J Kosinski, and B G Border, and H S Lee
Department of Cell Biology and Anatomy, University of Texas Health Science Center, Dallas 75235.

Ultrastructural studies are described that have identified in the basilar pontine nuclei (BPN), the synaptic boutons formed by the corticopontine, cerebellopontine, tectopontine, and dorsal column nuclei-pontine afferent projection systems. In addition, immunocytochemical studies visualized neuronal somata, dendrites, and synaptic boutons that contain immunoreactivity for GABA or the synthesizing enzyme glutamic acid decarboxylase (GAD). Based upon differences in the mode of degeneration and postsynaptic locus of degenerative synaptic boutons in the BPN, it is suggested that two types of cortical neurons and three classes of deep cerebellar nuclear cells project to the BPN. For similar reasons, it appears that two types of neurons in the dorsal column nuclei project to the BPN while only one type of afferent synaptic bouton takes origin from the superior colliculus. Furthermore it appears that the population of BPN neurons projecting to the paramedian lobule receives convergent inputs from the cutaneous periphery and the corresponding region of sensorimotor cortex. Studies employing GAD immunohistochemistry indicate that GABA-ergic neurons and axon terminals are present in the BPN and thus support the suggestion that a local inhibitory interneuron is present within the BPN. Taken together these observations suggest that basilar pontine neurons might play a more active role in the integration of various types of information destined for the cerebellar cortex than has previously been recognized.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D002530 Cerebellopontine Angle Junction between the cerebellum and the pons. Cerebellopontile Angle,Angle, Cerebellopontile,Angle, Cerebellopontine,Angles, Cerebellopontile,Angles, Cerebellopontine,Cerebellopontile Angles,Cerebellopontine Angles
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001479 Basal Ganglia Large subcortical nuclear masses derived from the telencephalon and located in the basal regions of the cerebral hemispheres. Basal Nuclei,Ganglia, Basal,Basal Nuclear Complex,Ganglion, Basal,Basal Nuclear Complices,Nuclear Complex, Basal,Nuclei, Basal
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

G A Mihailoff, and R J Kosinski, and B G Border, and H S Lee
January 1981, The Journal of comparative neurology,
G A Mihailoff, and R J Kosinski, and B G Border, and H S Lee
January 1981, The Journal of comparative neurology,
G A Mihailoff, and R J Kosinski, and B G Border, and H S Lee
March 1992, Neuroscience research,
G A Mihailoff, and R J Kosinski, and B G Border, and H S Lee
December 2005, Experimental brain research,
G A Mihailoff, and R J Kosinski, and B G Border, and H S Lee
July 1978, The Journal of comparative neurology,
G A Mihailoff, and R J Kosinski, and B G Border, and H S Lee
October 2002, The Journal of comparative neurology,
G A Mihailoff, and R J Kosinski, and B G Border, and H S Lee
January 1980, Brain research bulletin,
G A Mihailoff, and R J Kosinski, and B G Border, and H S Lee
November 1942, California and western medicine,
G A Mihailoff, and R J Kosinski, and B G Border, and H S Lee
February 2001, The Journal of comparative neurology,
Copied contents to your clipboard!