Diffusion and consumption of oxygen in the resting frog sartorius muscle. 1978

M Mahler

Adaptations of the method of Takahashi et al. (1966. J. Gen. Physiol. 50:317-333) were used to test the validity of the one-dimensional diffusion equation for O2 in the resting excised frog sartorius muscle. This equation is: (formula: see text) where x is the distance perpendicular to the muscle surface. t is time, P(x, t) is the partial pressure of O2,D and alpha are the diffusion coefficient and solubility for O2 in the tissue, and Q is the rate of O2 consumption. P(O, t), the time-course of PO2 at one muscle surface, was measured by a micro-oxygen electrode. Transients in the PO2 profile of the muscle were induced by two methods: (a) after an equilibration period, one surface was sealed off by a disc in which the O2 electrode was embedded; (b) when PO2 at this surface reached a steady state, a step change was made in the PO2 at the other surface. With either method, the agreement between the measured P(O, t) and that predicted by the diffusion equation was excellent, making possible the calculation of D and Q. These two methods yielded statistically indistinguishable results, with the following pooled means (+/- SEM): (formula: see text) At each temperature, D was independent of muscle thickness (range, 0.67-1.34 mm). The activation energy (EA) for diffusion of oxygen in muscle was -3.85 kcal/mol, which closely matches the corresponding value in water. Together with absolute values of D in water taken from the literature, the present data imply that (Dmuscle/DH2O) is in the range 0.59-0.69. This value, and that of EA, are in agreement with the theory of Wang (1954, J. Am. Chem. Soc. 76:4755-4763), suggesting that with respects to the diffusion of O2, to a useful approximation, frog skeletal muscle may be considered simply as a homogeneous protein solution.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

M Mahler
June 1963, Journal of cellular and comparative physiology,
M Mahler
February 1965, Journal of cellular and comparative physiology,
M Mahler
October 1962, The American journal of physiology,
M Mahler
August 1966, The American journal of physiology,
M Mahler
December 1979, The Journal of physiology,
M Mahler
October 1964, Journal of cellular and comparative physiology,
M Mahler
March 1967, The Journal of pharmacology and experimental therapeutics,
M Mahler
June 1964, Journal of cellular and comparative physiology,
M Mahler
January 1954, Helvetica physiologica et pharmacologica acta,
Copied contents to your clipboard!