Kinetics of oxygen consumption after a single isometric tetanus of frog sartorius muscle at 20 degrees C. 1978

M Mahler

The time-course of the rate of oxygen consumption (QO2) has been measured in the excised frog sartorius muscle after single isometric tetani of 0.1-1.0 s at 20 degrees C. To measure deltaQO2(t), the change in QO2 from its basal level, a novel method was devised, based on the validity in this tissue of the one-dimensional diffusion equation for oxygen, established in the preceding paper. After a tetanus, deltaQO2 reached a peak within 45-90 s, then declined exponentially, and could be well fit by deltaQO2(t) = QO + Q1(epsilon -k1t - epsilon-k2t). tau2 (= 1/k2), which characterized the rise of deltaQO2, was a decreasing function of tetanus duration (range: from 1.1 +/- 0.28 min [nu = 5] for a 0.1-s tetanus, to 0.34 +/- 0.05 min [nu = 8] for a 1.0-sec tetanus). tau1 (= 1/k1), which characterized the decline of deltaQO2, was not dependent on tetanus duration, with mean 3.68 +/- -.24 min (nu = 46). A forthcoming paper in this series shows that these kinetics of deltaQO2 are the responses to impulse-like changes in the rate of ATP hydrolysis. The variation of tau2 with tetanus duration thus indicates the involvement of a nonlinear process in the coupling of O2 consumption to ATP hydrolysis. However, the monoexponential decline of deltaQO2(t), with time constant independent of tetanus duration, suggests that during this phase, the coupling is rate-limited by a single reaction with apparent first order kinetics.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D003080 Cold Temperature An absence of warmth or heat or a temperature notably below an accustomed norm. Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

Copied contents to your clipboard!