The structure and regulation of phosphoglucose isomerase in Saccharomyces cerevisiae. 1988

J B Green, and A P Wright, and W Y Cheung, and W E Lancashire, and B S Hartley
Centre for Biotechnology, Imperial College, London, UK.

We have cloned and sequenced the PGI1 gene, encoding phosphoglucose isomerase (E.C.5.3.1.9), from Saccharomyces cerevisiae. The nucleotide sequence predicts subunits of 554 amino acids with a molecular weight of 61,230. Both the size and amino acid composition correlate well with measurements from purified protein. We have compared the PGI1 protein with the predicted sequence for pig muscle PGI. In spite of some evolutionary divergence the proteins are very similar and there are some highly conserved regions, two of which have been implicated in the active site. It has been suggested that PGI exists in two or more isozyme forms in S. cerevisiae and analogy with ADR2/ADC1 suggests that such PGI isozymes might also be differentially regulated during glycolytic/gluconeogenic growth. We have used accurate quantitation of PGI1 mRNA and gene fusions of PGI1 to the lacZ gene of Escherichia coli to show that PGI1 transcription is regulated neither between glycolytic and gluconeogenic growth nor between exponential and stationary phase. The complete lack of PGI activity in PGI1 deletion mutants and of differential regulation suggests that the isozymes of PGI might result merely from processing of the PGI1 gene product.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005956 Glucose-6-Phosphate Isomerase An aldose-ketose isomerase that catalyzes the reversible interconversion of glucose 6-phosphate and fructose 6-phosphate. In prokaryotic and eukaryotic organisms it plays an essential role in glycolytic and gluconeogenic pathways. In mammalian systems the enzyme is found in the cytoplasm and as a secreted protein. This secreted form of glucose-6-phosphate isomerase has been referred to as autocrine motility factor or neuroleukin, and acts as a cytokine which binds to the AUTOCRINE MOTILITY FACTOR RECEPTOR. Deficiency of the enzyme in humans is an autosomal recessive trait, which results in CONGENITAL NONSPHEROCYTIC HEMOLYTIC ANEMIA. Glucosephosphate Isomerase,Phosphoglucose Isomerase,Phosphohexose Isomerase,Autocrine Motility Factor,Isomerase, Glucose 6 Phosphate,Neuroleukin,Tumor Autocrine Motility Factor,Tumor-Cell Autocrine Motility Factor,Factor, Autocrine Motility,Glucose 6 Phosphate Isomerase,Isomerase, Glucose-6-Phosphate,Isomerase, Glucosephosphate,Isomerase, Phosphoglucose,Isomerase, Phosphohexose,Motility Factor, Autocrine,Tumor Cell Autocrine Motility Factor
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J B Green, and A P Wright, and W Y Cheung, and W E Lancashire, and B S Hartley
November 1977, Molecular & general genetics : MGG,
J B Green, and A P Wright, and W Y Cheung, and W E Lancashire, and B S Hartley
February 1994, The Journal of biological chemistry,
J B Green, and A P Wright, and W Y Cheung, and W E Lancashire, and B S Hartley
September 1992, FEBS letters,
J B Green, and A P Wright, and W Y Cheung, and W E Lancashire, and B S Hartley
February 2024, Biotechnology letters,
J B Green, and A P Wright, and W Y Cheung, and W E Lancashire, and B S Hartley
January 1986, Molecular & general genetics : MGG,
J B Green, and A P Wright, and W Y Cheung, and W E Lancashire, and B S Hartley
September 1988, Journal of general microbiology,
J B Green, and A P Wright, and W Y Cheung, and W E Lancashire, and B S Hartley
January 1987, Journal of general microbiology,
J B Green, and A P Wright, and W Y Cheung, and W E Lancashire, and B S Hartley
August 1986, Molecular & general genetics : MGG,
J B Green, and A P Wright, and W Y Cheung, and W E Lancashire, and B S Hartley
January 1987, Current genetics,
J B Green, and A P Wright, and W Y Cheung, and W E Lancashire, and B S Hartley
December 1994, Gene,
Copied contents to your clipboard!