Neural Mechanisms Involved in the Noxious Physical Stress-Induced Inhibition of Ovarian Estradiol Secretion. 2019

Sae Uchida, and Fusako Kagitani
Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.

Stress is known to change the secretion of ovarian steroid hormones via the hypothalamic-pituitary-ovarian (HPO) axis. Noxious physical stress can cause reflex responses in visceral function via autonomic nerves. This article reviews our recent animal studies on neural mechanisms involved in ovarian estradiol secretion induced by noxious physical stress stimulation. In anesthetized rats, noxious physical stress (pinching the hindpaw or electrical stimulation of the tibial nerve) decreased ovarian estradiol secretion. These noxious stress-induced ovarian hormonal responses were observed after decerebration but were abolished after spinal transection. Electrical stimulation of the ovarian sympathetic nerves (superior ovarian nerves: SON) decreased ovarian estradiol secretion. The reduced secretion of ovarian estradiol induced by hindpaw pinching was abolished by bilateral severance of the SON. Efferent activity of the SON was increased following hindpaw pinching. Thus, the inhibition of ovarian estradiol secretion during noxious physical stress was mainly integrated in the brainstem, and this inhibitory response was due to reflex activation of sympathetic nerves to the ovary. In rats, the sympathetic inhibitory regulation of ovarian estradiol secretion was pronounced when the HPO axis was inhibited by chronic estradiol treatment. Considering the female life cycle, extensive physical stress may inhibit ovarian function, especially before puberty and during old ages when the HPO axis is inactive. Anat Rec, 302:904-911, 2019. © 2019 Wiley Periodicals, Inc.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012741 Sexual Maturation Achievement of full sexual capacity in animals and in humans. Sex Maturation,Maturation, Sex,Maturation, Sexual

Related Publications

Sae Uchida, and Fusako Kagitani
December 1999, The Journal of pharmacology and experimental therapeutics,
Sae Uchida, and Fusako Kagitani
April 1986, Digestive diseases and sciences,
Sae Uchida, and Fusako Kagitani
May 1975, The Journal of pharmacology and experimental therapeutics,
Sae Uchida, and Fusako Kagitani
December 2019, Molecular and cellular endocrinology,
Sae Uchida, and Fusako Kagitani
April 1999, Biological & pharmaceutical bulletin,
Sae Uchida, and Fusako Kagitani
February 1997, British journal of pharmacology,
Sae Uchida, and Fusako Kagitani
May 2020, Antioxidants & redox signaling,
Sae Uchida, and Fusako Kagitani
December 1993, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!