Patterns of N-CAM expression during myogenesis in Xenopus laevis. 1988

B K Kay, and L M Schwartz, and U Rutishauser, and T H Qiu, and H B Peng
Department of Biology, University of North Carolina, Chapel Hill 27514.

The neural cell adhesion molecule (N-CAM) is seen in the membrane of nerves and muscles from several vertebrate species. Using indirect immunofluorescence, we have examined the expression of this protein during embryonic and postembryonic myogenesis in the African clawed frog, Xenopus laevis. While good staining for N-CAM was seen in neuronal tissues at all stages examined, no staining of embryonic muscle was observed, including both mononucleated and polynucleated myoblasts. In contrast, limb muscles formed at metamorphosis showed strong expression of N-CAM. The developing limb muscles eventually lose their N-CAM, but will reexpress it dramatically when denervated. These observations suggest that myogenesis programs executed at different stages of development can display distinct patterns of N-CAM expression.

UI MeSH Term Description Entries
D008675 Metamorphosis, Biological Profound physical changes during maturation of living organisms from the immature forms to the adult forms, such as from TADPOLES to frogs; caterpillars to BUTTERFLIES. Biological Metamorphosis,Biological Metamorphoses,Metamorphoses, Biological
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000954 Antigens, Surface Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated. Cell Surface Antigens,Surface Antigens,Surface Markers, Immunological,Cell Surface Antigen,Immunologic Surface Markers,Markers, Immunological Surface,Surface Antigen,Surface Markers, Immunologic,Antigen, Cell Surface,Antigen, Surface,Antigens, Cell Surface,Immunological Surface Markers,Markers, Immunologic Surface,Surface Antigen, Cell,Surface Antigens, Cell
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D015815 Cell Adhesion Molecules Surface ligands, usually glycoproteins, that mediate cell-to-cell adhesion. Their functions include the assembly and interconnection of various vertebrate systems, as well as maintenance of tissue integration, wound healing, morphogenic movements, cellular migrations, and metastasis. Cell Adhesion Molecule,Intercellular Adhesion Molecule,Intercellular Adhesion Molecules,Leukocyte Adhesion Molecule,Leukocyte Adhesion Molecules,Saccharide-Mediated Cell Adhesion Molecules,Saccharide Mediated Cell Adhesion Molecules,Adhesion Molecule, Cell,Adhesion Molecule, Intercellular,Adhesion Molecule, Leukocyte,Adhesion Molecules, Cell,Adhesion Molecules, Intercellular,Adhesion Molecules, Leukocyte,Molecule, Cell Adhesion,Molecule, Intercellular Adhesion,Molecule, Leukocyte Adhesion,Molecules, Cell Adhesion,Molecules, Intercellular Adhesion,Molecules, Leukocyte Adhesion
D024510 Muscle Development Developmental events leading to the formation of adult muscular system, which includes differentiation of the various types of muscle cell precursors, migration of myoblasts, activation of myogenesis and development of muscle anchorage. Myofibrillogenesis,Myogenesis,Muscular Development,Development, Muscle,Development, Muscular

Related Publications

B K Kay, and L M Schwartz, and U Rutishauser, and T H Qiu, and H B Peng
January 1994, Trends in cardiovascular medicine,
B K Kay, and L M Schwartz, and U Rutishauser, and T H Qiu, and H B Peng
November 2001, Developmental biology,
B K Kay, and L M Schwartz, and U Rutishauser, and T H Qiu, and H B Peng
April 1990, Development (Cambridge, England),
B K Kay, and L M Schwartz, and U Rutishauser, and T H Qiu, and H B Peng
June 2009, Zoological science,
B K Kay, and L M Schwartz, and U Rutishauser, and T H Qiu, and H B Peng
June 2006, Tissue & cell,
B K Kay, and L M Schwartz, and U Rutishauser, and T H Qiu, and H B Peng
January 1991, Neurochemistry international,
B K Kay, and L M Schwartz, and U Rutishauser, and T H Qiu, and H B Peng
January 2009, The International journal of developmental biology,
B K Kay, and L M Schwartz, and U Rutishauser, and T H Qiu, and H B Peng
April 1992, European journal of cell biology,
B K Kay, and L M Schwartz, and U Rutishauser, and T H Qiu, and H B Peng
November 1987, Development (Cambridge, England),
B K Kay, and L M Schwartz, and U Rutishauser, and T H Qiu, and H B Peng
January 2000, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing,
Copied contents to your clipboard!