The nucleotide sequence of the Escherichia coli rts gene. 1988

J A Flamm, and J D Friesen, and A J Otsuka
Department of Genetics, University of California, Berkeley 94720.

The nucleotide sequence of rts, an essential Escherichia coli gene, has been determined. Transformation of an rts mutant with the plasmid, pJAF1, containing the rts gene resulted in rescue of the defect. The transformation experiments indicate that the rts gene is distinct from the flanking birA, tRNA and tufB genes.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

J A Flamm, and J D Friesen, and A J Otsuka
April 1987, Nucleic acids research,
J A Flamm, and J D Friesen, and A J Otsuka
May 1989, FEMS microbiology letters,
J A Flamm, and J D Friesen, and A J Otsuka
September 1990, Nucleic acids research,
J A Flamm, and J D Friesen, and A J Otsuka
November 1989, Canadian journal of microbiology,
J A Flamm, and J D Friesen, and A J Otsuka
October 1980, Proceedings of the National Academy of Sciences of the United States of America,
J A Flamm, and J D Friesen, and A J Otsuka
October 1989, Nucleic acids research,
J A Flamm, and J D Friesen, and A J Otsuka
September 1989, Gene,
J A Flamm, and J D Friesen, and A J Otsuka
May 1986, Nucleic acids research,
J A Flamm, and J D Friesen, and A J Otsuka
December 1987, Nucleic acids research,
J A Flamm, and J D Friesen, and A J Otsuka
November 1984, Bioscience reports,
Copied contents to your clipboard!