Eukaryotic elongation factor 2 (eEF2) kinase/eEF2 plays protective roles against glucose deprivation-induced cell death in H9c2 cardiomyoblasts. 2019

Satoshi Kameshima, and Muneyoshi Okada, and Hideyuki Yamawaki
Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada, Aomori, 034-8628, Japan.

During the development of cardiac hypertrophy, glucose deprivation (GD) associated with coronary microvascular rarefaction is caused, leading to cardiomyocyte death. Phosphorylation (inactivation) of eukaryotic elongation factor 2 (eEF2) by eEF2 kinase (eEF2K) inhibits protein translation, a highly energy consuming process, which plays protective roles against nutrient deprivation-induced cell death. We previously showed that eEF2 phosphorylation was increased in isolated heart from several cardiac hypertrophy models. In this study, we investigated whether eEF2K/eEF2 mediates the inhibition of cardiomyocyte death under GD condition. In H9c2 rat cardiomyoblasts cultured with serum-free medium, GD significantly augmented eEF2 phosphorylation and signals related to autophagy [increase of microtubule-associated protein 1 light chain 3 (LC3)-II to LC3-I ratio] and apoptosis (cleavage of caspase-3) as determined by Western blotting. GD induced cell death, which was augmented by eEF2K gene knockdown using a small interfering RNA. eEF2K gene knockdown significantly augmented GD-induced cleavage of caspase-3 and apoptotic nuclear condensation as determined by 4', 6-diamidino-2-phenylindole staining. In contrast, eEF2K gene knockdown significantly inhibited GD-induced increase of LC3-II to LC3-I ratio and autophagosome formation as determined by an immunofluorescence staining. An inhibitor of autophagy, 3-methyladenine or bafilomycin A1 significantly augmented GD-induced cleavage of caspase-3. Further, eEF2K gene knockdown significantly inhibited GD-induced phosphorylation of adenosine monophosphate-activated protein kinase (AMPK)α and its downstream substrate, unc-51 like autophagy activating kinase (ULK)1. An inhibitor of AMPK, dorsomorphin significantly inhibited GD-induced increase of LC3-II to LC3-I ratio. In conclusion, we for the first time revealed that eEF2K/eEF2 axis under GD condition mediates the inhibition of apoptotic H9c2 cell death at least in part via promotion of autophagy through AMPKα/ULK1 signaling pathway.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000071182 Autophagosomes Large spherical double-layered structures which function in AUTOPHAGY to engulf intracellular components such as ORGANELLES or pathogens. Their outer membrane then fuses with the LYSOSOME (forming the AUTOLYSOSOME) and the inner membrane and contents are digested by lysosomal HYDROLASES. Phagophores,Autophagosome,Phagophore
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016923 Cell Death The termination of the cell's ability to carry out vital functions such as metabolism, growth, reproduction, responsiveness, and adaptability. Death, Cell
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Satoshi Kameshima, and Muneyoshi Okada, and Hideyuki Yamawaki
February 2013, Molecular and cellular biology,
Satoshi Kameshima, and Muneyoshi Okada, and Hideyuki Yamawaki
April 2011, Cell biochemistry and function,
Satoshi Kameshima, and Muneyoshi Okada, and Hideyuki Yamawaki
March 2008, Cell death and differentiation,
Satoshi Kameshima, and Muneyoshi Okada, and Hideyuki Yamawaki
April 2018, The Journal of biological chemistry,
Satoshi Kameshima, and Muneyoshi Okada, and Hideyuki Yamawaki
October 2014, Food & function,
Satoshi Kameshima, and Muneyoshi Okada, and Hideyuki Yamawaki
August 2011, Journal of cellular biochemistry,
Satoshi Kameshima, and Muneyoshi Okada, and Hideyuki Yamawaki
January 2014, Asian Pacific journal of cancer prevention : APJCP,
Satoshi Kameshima, and Muneyoshi Okada, and Hideyuki Yamawaki
May 2014, Advances in biological regulation,
Satoshi Kameshima, and Muneyoshi Okada, and Hideyuki Yamawaki
May 2014, The Journal of biological chemistry,
Copied contents to your clipboard!