Proteolytic processing of human brain alpha spectrin (fodrin): identification of a hypersensitive site. 1988

A S Harris, and J S Morrow
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510.

The processing of brain spectrin (fodrin) by calcium-dependent proteases at the postsynaptic membrane has been postulated to be one of the central molecular mechanisms underlying long-term potentiation (LTP). The effect of such processing on the structure and function of brain spectrin, and on spectrin's ability to organize or otherwise regulate receptor function remains unclear. To address these issues, human and bovine brain spectrin were digested under mild conditions with several proteases, and the resulting cleavage fragments analyzed by 2-dimensional chymotryptic 125I peptide mapping. These studies identify an underlying protease-resistant domain structure reminiscent of, yet distinctly different from, human erythroid spectrin. More importantly, fodrin is unusual for the presence of a single, proteolytically hypersensitive site in the center of the alpha subunit, which is the favored site of action by many proteases, including the calcium-dependent neutral proteases. This proteolytically hypersensitive site is a unique feature of alpha nonerythroid spectrin since it is absent from human erythrocyte spectrin and appears to be the site at which the molecule is processed in vivo. In addition, on the basis of gel overlay techniques, it appears that the hypersensitive site is also the site at which calmodulin binds to the alpha-subunit in a calcium-dependent manner. These studies thus establish at the molecular level 2 calcium-dependent mechanisms by which brain spectrin function might be regulated and provide a conceptual and methodological framework for further investigation into the function of this important molecule.

UI MeSH Term Description Entries
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

A S Harris, and J S Morrow
March 1983, FEBS letters,
A S Harris, and J S Morrow
October 1987, Biochemical Society transactions,
A S Harris, and J S Morrow
October 1988, Neuroscience letters,
A S Harris, and J S Morrow
October 1995, Biochemistry,
A S Harris, and J S Morrow
February 2001, FEBS letters,
A S Harris, and J S Morrow
January 1987, Differentiation; research in biological diversity,
A S Harris, and J S Morrow
January 1993, Neuroscience,
A S Harris, and J S Morrow
April 1989, International journal of biological macromolecules,
Copied contents to your clipboard!