Beech Wood Pyrolysis in Polyethylene Melt as a Means of Enhancing Levoglucosan and Methoxyphenol Production. 2019

Shogo Kumagai, and Kohei Fujita, and Yusuke Takahashi, and Yumi Nakai, and Tomohito Kameda, and Yuko Saito, and Toshiaki Yoshioka
Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi, 980-8579, Japan. kumagai@tohoku.ac.jp.

Recycling wood/plastic composites in municipal and industrial wastes currently represents a challenge which needs to be overcome. In this work, we considered the concept of independent pyrolysis of wood and plastic in wood/plastic mixtures for enabling a versatile catalytic process design which is capable of producing recoverable final products from both components. In order to reveal the influence of plastic on wood pyrolysis, the pyrolysis of beech wood (BW, wood material) in a polyethylene (PE) melt (polyolefin material) was performed at 350 °C. The combined use of thermogravimetric analysis, product recovery studies, in situ radical characterisations, and microscopic analysis revealed the influence of the PE melt on the BW pyrolysis. More specifically, a physical prevention of the intermolecular condensation and hydrogen abstraction from PE pyrolysates in the liquid/solid phase was observed. These interactions enhanced the production of levoglucosan and methoxyphenols by factors of 1.7 and 1.4, respectively, during the BW pyrolysis in the PE melt. Based on these results, we concluded that the observed synergistic effects could potentially control the yield and quality of useful products, as well as the utilisation of mixed wood/plastic wastes, which cannot be effectively recycled otherwise.

UI MeSH Term Description Entries

Related Publications

Shogo Kumagai, and Kohei Fujita, and Yusuke Takahashi, and Yumi Nakai, and Tomohito Kameda, and Yuko Saito, and Toshiaki Yoshioka
May 2020, Waste management (New York, N.Y.),
Shogo Kumagai, and Kohei Fujita, and Yusuke Takahashi, and Yumi Nakai, and Tomohito Kameda, and Yuko Saito, and Toshiaki Yoshioka
July 2022, Bioresource technology,
Shogo Kumagai, and Kohei Fujita, and Yusuke Takahashi, and Yumi Nakai, and Tomohito Kameda, and Yuko Saito, and Toshiaki Yoshioka
September 1975, Oecologia,
Shogo Kumagai, and Kohei Fujita, and Yusuke Takahashi, and Yumi Nakai, and Tomohito Kameda, and Yuko Saito, and Toshiaki Yoshioka
August 1993, Biotechnology and bioengineering,
Shogo Kumagai, and Kohei Fujita, and Yusuke Takahashi, and Yumi Nakai, and Tomohito Kameda, and Yuko Saito, and Toshiaki Yoshioka
November 2017, Polymers,
Shogo Kumagai, and Kohei Fujita, and Yusuke Takahashi, and Yumi Nakai, and Tomohito Kameda, and Yuko Saito, and Toshiaki Yoshioka
April 2024, Bioresource technology,
Shogo Kumagai, and Kohei Fujita, and Yusuke Takahashi, and Yumi Nakai, and Tomohito Kameda, and Yuko Saito, and Toshiaki Yoshioka
January 2012, Environmental technology,
Shogo Kumagai, and Kohei Fujita, and Yusuke Takahashi, and Yumi Nakai, and Tomohito Kameda, and Yuko Saito, and Toshiaki Yoshioka
December 2009, Bioresource technology,
Shogo Kumagai, and Kohei Fujita, and Yusuke Takahashi, and Yumi Nakai, and Tomohito Kameda, and Yuko Saito, and Toshiaki Yoshioka
November 2007, Carbohydrate research,
Shogo Kumagai, and Kohei Fujita, and Yusuke Takahashi, and Yumi Nakai, and Tomohito Kameda, and Yuko Saito, and Toshiaki Yoshioka
February 2022, Bioresource technology,
Copied contents to your clipboard!