Indirect methods for improving parameter estimation of PET kinetic models. 2019

Hsuan-Ming Huang, and Chih-Chieh Liu, and Chieh Lin
Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd., Taipei City, Zhongzheng Dist., 100, Taiwan.

OBJECTIVE Parametric images obtained from kinetic modeling of dynamic positron emission tomography (PET) data provide a new way of visualizing quantitative parameters of the tracer kinetics. However, due to the high noise level in pixel-wise image-driven time-activity curves, parametric images often suffer from poor quality and accuracy. In this study, we propose an indirect parameter estimation framework which aims to improve the quality and quantitative accuracy of parametric images. METHODS Three different approaches related to noise reduction and advanced curve fitting algorithm are used in the proposed framework. First, dynamic PET images are denoised using a kernel-based denoising method and the highly constrained backprojection technique. Second, gradient-free curve fitting algorithms are exploited to improve the accuracy and precision of parameter estimates. Third, a kernel-based post-filtering method is applied to parametric images to further improve the quality of parametric images. Computer simulations were performed to evaluate the performance of the proposed framework. CONCLUSIONS The simulation results showed that when compared to the Gaussian filtering, the proposed denoising method could provide better PET image quality, and consequentially improve the quality and quantitative accuracy of parametric images. In addition, gradient-free optimization algorithms (i.e., pattern search) can result in better parametric images than the gradient-based curve fitting algorithm (i.e., trust-region-reflective). Finally, our results showed that the proposed kernel-based post-filtering method could further improve the precision of parameter estimates while maintaining the accuracy of parameter estimates.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D049268 Positron-Emission Tomography An imaging technique using compounds labelled with short-lived positron-emitting radionuclides (such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18) to measure cell metabolism. It has been useful in study of soft tissues such as CANCER; CARDIOVASCULAR SYSTEM; and brain. SINGLE-PHOTON EMISSION-COMPUTED TOMOGRAPHY is closely related to positron emission tomography, but uses isotopes with longer half-lives and resolution is lower. PET Imaging,PET Scan,Positron-Emission Tomography Imaging,Tomography, Positron-Emission,Imaging, PET,Imaging, Positron-Emission Tomography,PET Imagings,PET Scans,Positron Emission Tomography,Positron Emission Tomography Imaging,Positron-Emission Tomography Imagings,Scan, PET,Tomography Imaging, Positron-Emission,Tomography, Positron Emission
D059629 Signal-To-Noise Ratio The comparison of the quantity of meaningful data to the irrelevant or incorrect data. Ratio, Signal-To-Noise,Ratios, Signal-To-Noise,Signal To Noise Ratio,Signal-To-Noise Ratios
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging

Related Publications

Hsuan-Ming Huang, and Chih-Chieh Liu, and Chieh Lin
March 2019, Bioinformatics (Oxford, England),
Hsuan-Ming Huang, and Chih-Chieh Liu, and Chieh Lin
March 2004, IEEE transactions on medical imaging,
Hsuan-Ming Huang, and Chih-Chieh Liu, and Chieh Lin
January 2011, Nuclear medicine communications,
Hsuan-Ming Huang, and Chih-Chieh Liu, and Chieh Lin
August 1970, FEBS letters,
Hsuan-Ming Huang, and Chih-Chieh Liu, and Chieh Lin
January 2000, Journal of computational neuroscience,
Hsuan-Ming Huang, and Chih-Chieh Liu, and Chieh Lin
June 2021, Biomedical physics & engineering express,
Hsuan-Ming Huang, and Chih-Chieh Liu, and Chieh Lin
November 2012, BMC systems biology,
Hsuan-Ming Huang, and Chih-Chieh Liu, and Chieh Lin
December 2009, Journal of pharmacokinetics and pharmacodynamics,
Hsuan-Ming Huang, and Chih-Chieh Liu, and Chieh Lin
December 2015, EJNMMI physics,
Hsuan-Ming Huang, and Chih-Chieh Liu, and Chieh Lin
April 2014, AIChE journal. American Institute of Chemical Engineers,
Copied contents to your clipboard!