Inference of Diets of Early Hominins from Primate Molar Form and Microwear. 2019

P S Ungar
1 Department of Anthropology, University of Arkansas, Fayetteville, AR, USA.

Paleontologists use fossil teeth to reconstruct the diets of early hominins and other extinct species. Some evidence is adaptive: nature selects for tooth size, shape, and structure best suited to specific food types. Other evidence includes traces left by actual foods eaten, such as microscopic tooth wear. This critical review considers how molars work, how they are used, and how occlusal topography and dental microwear can be used to infer diet and food preferences in the past, particularly for hominins of the Pliocene and early Pleistocene. Understanding that cheek teeth function as guides for chewing and tools for fracturing allows us to characterize aspects of occlusal form that reflect mechanical properties of foods to which a species is adapted. Living primates that often eat leaves, for example, have longer crests and more sloping occlusal surfaces than those that prefer hard foods. Studies of feeding ecology have shown, however, that tooth shape does not always correspond to preferred food items. It often follows mechanically challenging foods whether eaten often or rarely. Other lines of evidence that reflect actual tooth use are required to work out food preferences. Microwear textures, for example, reflect foods eaten by individuals in the past such that hard seeds and bone tend to leave complex, pitted surface textures, whereas tough leaves and meat more often leave anisotropic ones covered in long, parallel scratches. The study of fossil hominin molars shows how these various attributes are combined to infer diet and food preference in the past. A trend in occlusal morphology suggests decreased dietary specialization from Australopithecus to early Homo, and increasing dispersion in microwear complexity values is consistent with this. On the other hand, occlusal morphology may suggest dietary specialization in Paranthropus, although different species of this genus have different microwear texture patterns despite similar craniodental adaptations.

UI MeSH Term Description Entries
D008963 Molar The most posterior teeth on either side of the jaw, totaling eight in the deciduous dentition (2 on each side, upper and lower), and usually 12 in the permanent dentition (three on each side, upper and lower). They are grinding teeth, having large crowns and broad chewing surfaces. (Jablonski, Dictionary of Dentistry, 1992, p821) Molars
D011323 Primates An order of mammals consisting of more than 300 species that include LEMURS; LORISIDAE; TARSIERS; MONKEYS; and HOMINIDS. They are characterized by a relatively large brain when compared with other terrestrial mammals, forward-facing eyes, the presence of a CALCARINE SULCUS, and specialized MECHANORECEPTORS in the hands and feet which allow the perception of light touch. Primate
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014070 Tooth One of a set of bone-like structures in the mouth used for biting and chewing. Teeth
D015186 Hominidae Family of the suborder HAPLORHINI (Anthropoidea) comprising bipedal primate MAMMALS. It includes modern man (HOMO SAPIENS) and the great apes: gorillas (GORILLA GORILLA), chimpanzees (PAN PANISCUS and PAN TROGLODYTES), and orangutans (PONGO PYGMAEUS). Apes,Hominids,Hominins,Homo,Hominini,Pongidae,Ape,Hominid,Hominin,Homininus
D057085 Tooth Wear Loss of the tooth substance by chemical or mechanical processes Dental Wear,Dental Wears,Tooth Wears,Wear, Dental,Wear, Tooth,Wears, Dental,Wears, Tooth
Copied contents to your clipboard!