Histone H1 quantity determines the efficiencies of apoptotic DNA fragmentation and chromatin condensation. 2019

Marie Kijima, and Ryushin Mizuta
Research Institute for Biomedical Sciences, Tokyo University of Science.

Oligonucleosomal DNA fragmentation and chromatin condensation are two hallmarks of apoptosis. However, their generation mechanisms are not entirely understood. Histone H1, a positively charged nuclear protein located in the linker region of chromatin, is involved in higher-order chromatin structures and tight chromatin packing. On the basis of the physical and biochemical characteristics of histone H1, we hypothesized that histone H1 plays a role in determining the efficiencies of apoptotic DNA fragmentation and chromatin condensation. Therefore, we examined histone H1 quantity in five human leukemia cell lines and compared the efficiencies. The cell lines were categorized into two groups according to their origins: (i) Ramos and Molt-4 cells of lymphoid origin and (ii) U937, ML-1, and HL60 cells of myeloid origin. Compared to the lymphoid-origin group, the myeloid-origin group had lower levels of histone H1 but more open chromatin. Furthermore, the myeloid-origin group showed marked DNA fragmentation but less chromatin condensation during apoptosis. These results suggested that histone H1 determined chromatin structure and that its quantity affected the efficiencies of DNA fragmentation and chromatin condensation in apoptosis.

UI MeSH Term Description Entries
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D053938 DNA Fragmentation Splitting the DNA into shorter pieces by endonucleolytic DNA CLEAVAGE at multiple sites. It includes the internucleosomal DNA fragmentation, which along with chromatin condensation, are considered to be the hallmarks of APOPTOSIS. DNA Degradation, Apoptotic,Apoptotic DNA Degradation,Fragmentation, DNA

Related Publications

Marie Kijima, and Ryushin Mizuta
January 1978, Cold Spring Harbor symposia on quantitative biology,
Marie Kijima, and Ryushin Mizuta
February 1994, The Journal of experimental medicine,
Marie Kijima, and Ryushin Mizuta
October 1986, Journal of biomolecular structure & dynamics,
Marie Kijima, and Ryushin Mizuta
February 2007, Biological chemistry,
Marie Kijima, and Ryushin Mizuta
May 2007, Experimental parasitology,
Marie Kijima, and Ryushin Mizuta
November 1977, Proceedings of the National Academy of Sciences of the United States of America,
Marie Kijima, and Ryushin Mizuta
September 2014, Cell reports,
Marie Kijima, and Ryushin Mizuta
January 1999, Genetica,
Marie Kijima, and Ryushin Mizuta
March 1992, Trends in biochemical sciences,
Marie Kijima, and Ryushin Mizuta
January 1997, Microscopy research and technique,
Copied contents to your clipboard!