Activation of retinoid X receptor by bexarotene attenuates neuroinflammation via PPARγ/SIRT6/FoxO3a pathway after subarachnoid hemorrhage in rats. 2019

Yuchun Zuo, and Lei Huang, and Budbazar Enkhjargal, and Weilin Xu, and Ocak Umut, and Zachary D Travis, and Guangyu Zhang, and Jiping Tang, and Fei Liu, and John H Zhang
Department of Neurosurgery, Third XiangYa Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, China.

BACKGROUND Subarachnoid hemorrhage (SAH) is a life-threatening subtype of stroke with high mortality and disabilities. Retinoid X receptor (RXR) has been shown to be neuroprotective against ischemia/reperfusion injury. This study aimed to investigate the effects of the selective RXR agonist bexarotene on neuroinflammation in a rat model of SAH. METHODS Two hundred male Sprague-Dawley rats were used. The endovascular perforation induced SAH. Bexarotene was administered intraperitoneally at 1 h after SAH induction. To investigate the underlying mechanism, the selective RXR antagonist UVI3003 and RXR siRNA or SIRT6 inhibitor OSS128167 was administered via intracerebroventricular 1 h before SAH induction. Post-SAH assessments including SAH grade, neurological score, brain water content, Western blot, and immunofluorescence were performed. RESULTS The endogenous RXR and sirtuin 6 (SIRT6) protein levels were increased after SAH. Bexarotene treatment significantly reduced brain edema and improved the short-/long-term neurological deficit after SAH. Mechanistically, bexarotene increased the levels of PPARγ and SIRT6; decreased the expression of phosphorylated FoxO3a (p-FoxO3a), IL-6, IL-1β, and TNF-a; and inhibited the microglia activation and neutrophils infiltration at 24 h after SAH. Either UVI3003, OSS128167, or RXR siRNA abolished the neuroprotective effects of bexarotene and its regulation on protein levels of PPARγ/SIRT6/p-FoxO3a after SAH. CONCLUSIONS The activation of RXR by bexarotene attenuated neuroinflammation and improved neurological deficits after SAH. The anti-neuroinflammatory effect was at least partially through regulating PPARγ/SIRT6/FoxO3a pathway. Bexarotene may be a promising therapeutic strategy in the management of SAH patients.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008297 Male Males
D000071316 Forkhead Box Protein O3 A forkhead box transcription factor and transcriptional activator which triggers type 1 programmed cell death (APOPTOSIS) in the absence of APOPTOSIS INHIBITING PROTEINS, including neuronal cell death induced by OXIDATIVE STRESS. It recognizes and binds to the DNA sequence 5'-(AG)TAAA(TC)A-3' and also functions in post-transcriptional regulation of the c-MYC PROTO-ONCOGENE. FOXO3 Protein,Forkhead in Rhabdomyosarcoma-Like 1 Protein,Forkhead in Rhabdomyosarcoma Like 1 Protein,Protein, FOXO3
D000077610 Bexarotene A rexinoid (an RXR-binding ligand), tetrahydronaphthalene derivative and RETINOID X RECEPTOR antagonist that is used in the treatment of CUTANEOUS T-CELL LYMPHOMA. 3-methyl-TTNEB,4-(1-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl)benzoic acid,LG69 compound,LGD 1069,LGD-1069,LGD1069,Targretin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013345 Subarachnoid Hemorrhage Bleeding into the intracranial or spinal SUBARACHNOID SPACE, most resulting from INTRACRANIAL ANEURYSM rupture. It can occur after traumatic injuries (SUBARACHNOID HEMORRHAGE, TRAUMATIC). Clinical features include HEADACHE; NAUSEA; VOMITING, nuchal rigidity, variable neurological deficits and reduced mental status. Hemorrhage, Subarachnoid,Perinatal Subarachnoid Hemorrhage,Subarachnoid Hemorrhage, Aneurysmal,Subarachnoid Hemorrhage, Spontaneous,SAH (Subarachnoid Hemorrhage),Subarachnoid Hemorrhage, Intracranial,Aneurysmal Subarachnoid Hemorrhage,Aneurysmal Subarachnoid Hemorrhages,Hemorrhage, Aneurysmal Subarachnoid,Hemorrhage, Intracranial Subarachnoid,Hemorrhage, Perinatal Subarachnoid,Hemorrhage, Spontaneous Subarachnoid,Hemorrhages, Aneurysmal Subarachnoid,Hemorrhages, Intracranial Subarachnoid,Hemorrhages, Perinatal Subarachnoid,Hemorrhages, Spontaneous Subarachnoid,Hemorrhages, Subarachnoid,Intracranial Subarachnoid Hemorrhage,Intracranial Subarachnoid Hemorrhages,Perinatal Subarachnoid Hemorrhages,SAHs (Subarachnoid Hemorrhage),Spontaneous Subarachnoid Hemorrhage,Spontaneous Subarachnoid Hemorrhages,Subarachnoid Hemorrhage, Perinatal,Subarachnoid Hemorrhages,Subarachnoid Hemorrhages, Aneurysmal,Subarachnoid Hemorrhages, Intracranial,Subarachnoid Hemorrhages, Perinatal,Subarachnoid Hemorrhages, Spontaneous
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D047488 Retinoid X Receptors A subtype of RETINOIC ACID RECEPTORS that are specific for 9-cis-retinoic acid which function as nuclear TRANSCRIPTION FACTORS that regulate multiple signaling pathways. Retinoid X Receptor,9-cis-Retinoic Acid Receptor,RXR Protein,Receptor, Retinoid X,XR78E-F protein,Protein, RXR,Receptor, 9-cis-Retinoic Acid,Receptors, Retinoid X,XR78E F protein,protein, XR78E-F
D047495 PPAR gamma A nuclear transcription factor. Heterodimerization with RETINOID X RECEPTOR ALPHA is important in regulation of GLUCOSE metabolism and CELL GROWTH PROCESSES. It is a target of THIAZOLIDINEDIONES for control of DIABETES MELLITUS. PPARgamma,PPARgamma2,PPARgamma3,Peroxisome Proliferator-Activated Receptor gamma,Thiazolidinedione Receptor,mPPARgamma1,mPPARgamma2,Peroxisome Proliferator Activated Receptor gamma,Receptor, Thiazolidinedione

Related Publications

Yuchun Zuo, and Lei Huang, and Budbazar Enkhjargal, and Weilin Xu, and Ocak Umut, and Zachary D Travis, and Guangyu Zhang, and Jiping Tang, and Fei Liu, and John H Zhang
August 2018, Neurological research,
Yuchun Zuo, and Lei Huang, and Budbazar Enkhjargal, and Weilin Xu, and Ocak Umut, and Zachary D Travis, and Guangyu Zhang, and Jiping Tang, and Fei Liu, and John H Zhang
March 2018, Brain, behavior, and immunity,
Yuchun Zuo, and Lei Huang, and Budbazar Enkhjargal, and Weilin Xu, and Ocak Umut, and Zachary D Travis, and Guangyu Zhang, and Jiping Tang, and Fei Liu, and John H Zhang
June 2018, Journal of neuroinflammation,
Yuchun Zuo, and Lei Huang, and Budbazar Enkhjargal, and Weilin Xu, and Ocak Umut, and Zachary D Travis, and Guangyu Zhang, and Jiping Tang, and Fei Liu, and John H Zhang
December 2023, International immunopharmacology,
Yuchun Zuo, and Lei Huang, and Budbazar Enkhjargal, and Weilin Xu, and Ocak Umut, and Zachary D Travis, and Guangyu Zhang, and Jiping Tang, and Fei Liu, and John H Zhang
December 2021, Neuroreport,
Yuchun Zuo, and Lei Huang, and Budbazar Enkhjargal, and Weilin Xu, and Ocak Umut, and Zachary D Travis, and Guangyu Zhang, and Jiping Tang, and Fei Liu, and John H Zhang
April 2017, Neurochemical research,
Yuchun Zuo, and Lei Huang, and Budbazar Enkhjargal, and Weilin Xu, and Ocak Umut, and Zachary D Travis, and Guangyu Zhang, and Jiping Tang, and Fei Liu, and John H Zhang
September 2023, Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association,
Yuchun Zuo, and Lei Huang, and Budbazar Enkhjargal, and Weilin Xu, and Ocak Umut, and Zachary D Travis, and Guangyu Zhang, and Jiping Tang, and Fei Liu, and John H Zhang
July 2021, Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics,
Yuchun Zuo, and Lei Huang, and Budbazar Enkhjargal, and Weilin Xu, and Ocak Umut, and Zachary D Travis, and Guangyu Zhang, and Jiping Tang, and Fei Liu, and John H Zhang
November 2014, Experimental neurology,
Yuchun Zuo, and Lei Huang, and Budbazar Enkhjargal, and Weilin Xu, and Ocak Umut, and Zachary D Travis, and Guangyu Zhang, and Jiping Tang, and Fei Liu, and John H Zhang
October 2017, Brain, behavior, and immunity,
Copied contents to your clipboard!