Estradiol-binding proteins from mycelial and yeast-form cultures of Paracoccidioides brasiliensis. 1986

E P Stover, and G Schär, and K V Clemons, and D A Stevens, and D Feldman

Paracoccidioides brasiliensis, the etiologic agent of paracoccidioidomycosis, causes disease much more frequently in men than it does in women, suggesting that the hormonal milieu of the host might influence P. brasiliensis pathogenicity. We recently demonstrated that cytosol from yeast cultures of P. brasiliensis contains a high-affinity, low-capacity, tritiated 17 beta-estradiol [( 3H]estradiol)-binding protein. Estradiol and, to a lesser degree, diethylstilbestrol (DES), inhibited the transformation of P. brasiliensis cultures from the mycelial to the yeast form, an event critical to the establishment of infection. Our current studies demonstrated a somewhat higher affinity (apparent dissociation constant [Kd], approximately equal to 6 to 12 nM) of the estrogen-binding protein for [3H]estradiol than was previously described for yeast cytosol. The presence of both high- and low-affinity estrogen-binding sites in yeast-form P. brasiliensis cytosol was detected after warming the cytosol to 37 degrees C. The high-affinity protein was labile to further heating (56 degrees C), although the low-affinity protein was stable. Additional experiments demonstrated the presence of an estrogen-binding protein in cytosol prepared from mycelial-form P. brasiliensis. This estrogen-binding protein had a slightly lower affinity for [3H]estradiol (Kd approximately equal to 13 nM), and its cytosol contained somewhat fewer binding sites (approximately equal to 78 fmol/mg of protein) than did yeast-form P. brasiliensis cytosol. Of particular interest was the finding that DES, a weak competitor for [3H]estradiol binding in yeast cytosol, displaced [3H]estradiol from the mycelial-form binding moiety. DES had a 50- to 100-fold-lower affinity for the [3H]estradiol-binding protein than did estradiol, consistent with its lower bioactivity in the mycelial-to-yeast-form transformation studies. The current results lend further support to our hypothesis that endogenous estrogens in the host, acting through the cytosol binding protein in the fungus, inhibit mycelial-to-yeast-form transformation, thus explaining the resistance of women to paracoccidioidomycosis.

UI MeSH Term Description Entries
D010228 Paracoccidioides A mitosporic fungal genus. P. brasiliensis (previously Blastomyces brasiliensis) is the etiologic agent of PARACOCCIDIOIDOMYCOSIS. Blastomyces brasiliensis,Loboa loboi,Paracoccidioides brasiliensis
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D003904 Mitosporic Fungi A large and heterogenous group of fungi whose common characteristic is the absence of a sexual state. Many of the pathogenic fungi in humans belong to this group. Deuteromycetes,Deuteromycota,Fungi imperfecti,Fungi, Mitosporic,Hyphomycetes,Deuteromycete,Deuteromycotas,Fungi imperfectus,Fungus, Mitosporic,Hyphomycete,Mitosporic Fungus,imperfectus, Fungi
D004054 Diethylstilbestrol A synthetic nonsteroidal estrogen used in the treatment of menopausal and postmenopausal disorders. It was also used formerly as a growth promoter in animals. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), diethylstilbestrol has been listed as a known carcinogen. (Merck, 11th ed) Stilbestrol,Agostilben,Apstil,Diethylstilbestrol, (Z)-Isomer,Diethylstilbestrol, Disodium Salt,Distilbène,Stilbene Estrogen,Tampovagan,Estrogen, Stilbene
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D012738 Sex Hormone-Binding Globulin A glycoprotein migrating as a beta-globulin. Its molecular weight, 52,000 or 95,000-115,000, indicates that it exists as a dimer. The protein binds testosterone, dihydrotestosterone, and estradiol in the plasma. Sex hormone-binding protein has the same amino acid sequence as ANDROGEN-BINDING PROTEIN. They differ by their sites of synthesis and post-translational oligosaccharide modifications. Sex Steroid-Binding Protein,Testosterone-Estradiol Binding Globulin,Binding Globulin, Testosterone-Estradiol,Globulin, Sex Hormone-Binding,Globulin, Testosterone-Estradiol Binding,Hormone-Binding Globulin, Sex,Sex Hormone Binding Globulin,Sex Steroid Binding Protein,Steroid-Binding Protein, Sex,Testosterone Estradiol Binding Globulin

Related Publications

E P Stover, and G Schär, and K V Clemons, and D A Stevens, and D Feldman
January 1989, Revista do Instituto de Medicina Tropical de Sao Paulo,
E P Stover, and G Schär, and K V Clemons, and D A Stevens, and D Feldman
August 1965, Journal of bacteriology,
E P Stover, and G Schär, and K V Clemons, and D A Stevens, and D Feldman
August 1986, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology,
E P Stover, and G Schär, and K V Clemons, and D A Stevens, and D Feldman
June 1962, Journal of bacteriology,
E P Stover, and G Schär, and K V Clemons, and D A Stevens, and D Feldman
March 1969, Journal of bacteriology,
E P Stover, and G Schär, and K V Clemons, and D A Stevens, and D Feldman
March 1970, Journal of bacteriology,
E P Stover, and G Schär, and K V Clemons, and D A Stevens, and D Feldman
December 1980, Sabouraudia,
E P Stover, and G Schär, and K V Clemons, and D A Stevens, and D Feldman
December 1985, Sabouraudia,
E P Stover, and G Schär, and K V Clemons, and D A Stevens, and D Feldman
April 1988, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology,
E P Stover, and G Schär, and K V Clemons, and D A Stevens, and D Feldman
June 1986, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology,
Copied contents to your clipboard!