Small heat shock proteins of Drosophila associate with the cytoskeleton. 1986

B G Leicht, and H Biessmann, and K B Palter, and J J Bonner

Fractionation of heat-shocked Drosophila melanogaster Kc cells reveals that both the small heat shock proteins (hsp28, -26, -23, and -22) and vimentin-like intermediate filament proteins (IFPs) are abundantly represented in the nuclear fraction. Cofractionation of the IFPs with nuclei is due to the collapse of the IFP network against the nucleus upon heat shock, raising the possibility that cofractionation of the small hsps is by a similar mechanism. Indirect immunofluorescence supports this possibility. In salivary glands, both the hsps and the IFPs are cytoplasmic after mild-to-moderate heat shocks and only enter the nucleus upon severe--indeed, lethal--shocks. Double-label experiments with Schneider line 2 cells show that the IFPs and small hsps colocalize to the same perinuclear aggregates in 70% of the cells examined. Thus, the small hsps are associated with the cytoskeleton rather than with nuclear structures.

UI MeSH Term Description Entries
D007381 Intermediate Filament Proteins Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein. Fibroblast Intermediate Filament Proteins,Filament Proteins, Intermediate,Proteins, Intermediate Filament
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005591 Chemical Fractionation Separation of a mixture in successive stages, each stage removing from the mixture some proportion of one of the substances, for example by differential solubility in water-solvent mixtures. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Fractionation, Chemical,Chemical Fractionations,Fractionations, Chemical
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress

Related Publications

B G Leicht, and H Biessmann, and K B Palter, and J J Bonner
August 2000, Neuropathology and applied neurobiology,
B G Leicht, and H Biessmann, and K B Palter, and J J Bonner
July 1990, Journal of cell science,
B G Leicht, and H Biessmann, and K B Palter, and J J Bonner
May 2002, Biochemistry. Biokhimiia,
B G Leicht, and H Biessmann, and K B Palter, and J J Bonner
April 2002, Cell stress & chaperones,
B G Leicht, and H Biessmann, and K B Palter, and J J Bonner
February 2002, Journal of molecular and cellular cardiology,
B G Leicht, and H Biessmann, and K B Palter, and J J Bonner
January 1991, Results and problems in cell differentiation,
B G Leicht, and H Biessmann, and K B Palter, and J J Bonner
January 2002, Progress in molecular and subcellular biology,
B G Leicht, and H Biessmann, and K B Palter, and J J Bonner
September 1983, Experimental cell research,
B G Leicht, and H Biessmann, and K B Palter, and J J Bonner
October 2012, The international journal of biochemistry & cell biology,
B G Leicht, and H Biessmann, and K B Palter, and J J Bonner
November 2018, International journal of molecular sciences,
Copied contents to your clipboard!