Computer-assisted molecular modeling of tumor promoters: rationale for the activity of phorbol esters, teleocidin B, and aplysiatoxin. 1986

A M Jeffrey, and R M Liskamp

In the two-stage model of skin carcinogenesis, it is believed that initiators bind to DNA and that tumor promoters such as phorbol 12-tetradecanoate 13-acetate (TPA) bind noncovalently to membrane-associated high-affinity receptors, probably protein kinase C. Two other types of potent tumor-promoting substances, aplysiatoxin and teleocidin, appear to act also by binding to and activating protein kinase C, even though their chemical structures are quite different. Therefore, we have undertaken computer modeling of the special relationship of various functional groups in these three chemical classes of tumor promoters in an attempt to explain how these diverse structures bind to the same receptor molecule. We propose a stereochemical model in which the oxygens in TPA at C-3, C-4, C-9, and C-20 (O-3, O-4, O-9, and O-20) correspond to the O-11, N-13, N-1, and O-24 positions in teleocidin and the O-27, O-3, O-11, and O-30 oxygens in aplysiatoxin, respectively. In this model all distances with respect to overlap of the corresponding atoms are less than 1 A. In addition, all three types of molecules have their hydrophobic moieties oriented in a similar position. This model is further discussed with respect to other compounds showing various degrees of activity as tumor promoters, including mezerein, ingenol, and 4 alpha-TPA. The model explains how chemically diverse structures can have similar biological activity as tumor promoters and provides a basis for designing both agonists and antagonists of tumor promoters.

UI MeSH Term Description Entries
D008235 Lyngbya Toxins Toxins isolated from any species of the genus LYNGBYA or similar chemicals from other sources, including mollusks and micro-organisms. These have been found to be potent tumor promoters. They are biosynthesized from TRYPTOPHAN; VALINE; and METHIONINE nonribosomally (PEPTIDE BIOSYNTHESIS, NUCLEIC ACID-INDEPENDENT). Lyngbya Toxin,Lyngbyatoxin,Lyngbyatoxins,Toxin, Lyngbya
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D010703 Phorbol Esters Tumor-promoting compounds obtained from CROTON OIL (Croton tiglium). Some of these are used in cell biological experiments as activators of protein kinase C. Phorbol Diester,Phorbol Ester,Phorbol Diesters,Diester, Phorbol,Diesters, Phorbol,Ester, Phorbol,Esters, Phorbol
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D004224 Diterpenes Twenty-carbon compounds derived from MEVALONIC ACID or deoxyxylulose phosphate. Diterpene,Diterpenes, Cembrane,Diterpenes, Labdane,Diterpenoid,Labdane Diterpene,Norditerpene,Norditerpenes,Norditerpenoid,Cembranes,Diterpenoids,Labdanes,Norditerpenoids,Cembrane Diterpenes,Diterpene, Labdane,Labdane Diterpenes
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013729 Terpenes A class of compounds composed of repeating 5-carbon units of HEMITERPENES. Isoprenoid,Terpene,Terpenoid,Isoprenoids,Terpenoids

Related Publications

A M Jeffrey, and R M Liskamp
January 1987, Advances in cancer research,
A M Jeffrey, and R M Liskamp
May 1990, The Biochemical journal,
A M Jeffrey, and R M Liskamp
January 1983, Princess Takamatsu symposia,
A M Jeffrey, and R M Liskamp
January 1983, Princess Takamatsu symposia,
A M Jeffrey, and R M Liskamp
January 1987, Biology of the cell,
A M Jeffrey, and R M Liskamp
July 1985, Biochemical and biophysical research communications,
Copied contents to your clipboard!