Hydrogen-deuterium exchange mass spectrometry of membrane proteins in lipid nanodiscs. 2019

Michelle Redhair, and Amanda F Clouser, and William M Atkins
Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610, United States.

Hydrogen deuterium exchange mass spectrometry (H/DX MS) provides a quantitative comparison of the relative rates of exchange of amide protons for solvent deuterons. In turn, the rate of amide exchange depends on a complex combination of the stability of local secondary structure, solvent accessibility, and dynamics. H/DX MS has, therefore, been widely used to probe structure and function of soluble proteins, but its application to membrane proteins was limited previously to detergent solubilized samples. The large excess of lipids from model membranes, or from membrane fractions derived from in vivo samples, presents challenges with mass spectrometry. The lipid nanodisc platform, consisting of apolipoprotein A-derived membrane scaffold proteins, provides a native like membrane environment in which to capture analyte membrane proteins with a well defined, and low, ratio of lipid to protein. Membrane proteins in lipid nanodiscs are amenable to H/DX MS, and this is expected to lead to a rapid increase in the number of membrane proteins subjected to this analysis. Here we review the few literature examples of the application of H/DX MS to membrane proteins in nanodiscs. The incremental improvements in the experimental workflow of the H/DX MS are described and potential applications of this approach to study membrane proteins are described.

UI MeSH Term Description Entries
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass
D041961 Deuterium Exchange Measurement A research technique to measure solvent exposed regions of molecules that is used to provide insight about PROTEIN CONFORMATION. Hydrogen-Deuterium Exchange Measurement,Deuterium Exchange Measurements,Exchange Measurement, Deuterium,Exchange Measurement, Hydrogen-Deuterium,Exchange Measurements, Deuterium,Exchange Measurements, Hydrogen-Deuterium,Hydrogen Deuterium Exchange Measurement,Hydrogen-Deuterium Exchange Measurements,Measurement, Deuterium Exchange,Measurement, Hydrogen-Deuterium Exchange,Measurements, Deuterium Exchange,Measurements, Hydrogen-Deuterium Exchange
D049329 Nanostructures Materials which have structured components with at least one dimension in the range of 1 to 100 nanometers. These include NANOCOMPOSITES; NANOPARTICLES; NANOTUBES; and NANOWIRES. Nanomaterials,Nanostructured Materials,Material, Nanostructured,Materials, Nanostructured,Nanomaterial,Nanostructure,Nanostructured Material

Related Publications

Michelle Redhair, and Amanda F Clouser, and William M Atkins
July 2010, Analytical chemistry,
Michelle Redhair, and Amanda F Clouser, and William M Atkins
January 2009, Methods in molecular biology (Clifton, N.J.),
Michelle Redhair, and Amanda F Clouser, and William M Atkins
March 2018, Bio-protocol,
Michelle Redhair, and Amanda F Clouser, and William M Atkins
November 2018, Mass spectrometry reviews,
Michelle Redhair, and Amanda F Clouser, and William M Atkins
January 2020, Methods in molecular biology (Clifton, N.J.),
Michelle Redhair, and Amanda F Clouser, and William M Atkins
December 2021, Journal of the American Society for Mass Spectrometry,
Michelle Redhair, and Amanda F Clouser, and William M Atkins
July 2018, Methods (San Diego, Calif.),
Michelle Redhair, and Amanda F Clouser, and William M Atkins
January 2021, Analytical chemistry,
Michelle Redhair, and Amanda F Clouser, and William M Atkins
January 2012, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!