Antigenic heterogeneity in high- and low-virulence strains of Rickettsia rickettsii revealed by monoclonal antibodies. 1986

R L Anacker, and R H List, and R E Mann, and D L Wiedbrauk

Previously it has been reported that strains of Rickettsia rickettsii that differ greatly in their ability to cause disease in guinea pigs are similar by serological and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses. In this study, we used monoclonal antibodies to the virulent R and the relatively avirulent HLP strains to investigate strain differences which might account for the disparate behavior of the strains in guinea pigs. Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles of the R and HLP strains were nearly identical for polypeptides with apparent molecular weights greater than 32 kilodaltons (kDa). All of the monoclonal antibodies to a lipopolysaccharide-like antigen reacted equally well with antigen from both strains by immunoblotting. None of the antibodies to the lipopolysaccharide-like antigen protected mice against challenge with viable rickettsiae. Some antibodies reacted with both 120- and 155-kDa polypeptides of both strains in radioimmune precipitation and immunoblotting tests, and other antibodies reacted only with the homologous strain. The monoclonal antibodies cross-reacted with the heterologous strain in the enzyme-linked immunosorbent assay essentially either completely or not at all. The ability of the monoclonal antibodies to the 120- and 155-kDa polypeptides to protect mice against the two strains was correlated with the ability of the antibodies to react with the antigens in the enzyme-linked immunosorbent assay and radioimmune precipitation or immunoblotting tests. These results demonstrate that R and HLP antigens which appear identical in molecular weight differ in their compositions of antigenic determinants.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000918 Antibody Specificity The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. Antibody Specificities,Specificities, Antibody,Specificity, Antibody
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012284 Rickettsia rickettsii A species of gram-negative, aerobic bacteria that is the etiologic agent of ROCKY MOUNTAIN SPOTTED FEVER. Its cells are slightly smaller and more uniform in size than those of RICKETTSIA PROWAZEKII.

Related Publications

R L Anacker, and R H List, and R E Mann, and D L Wiedbrauk
November 1984, Infection and immunity,
R L Anacker, and R H List, and R E Mann, and D L Wiedbrauk
March 1983, Journal of clinical microbiology,
R L Anacker, and R H List, and R E Mann, and D L Wiedbrauk
April 2015, Infection and immunity,
R L Anacker, and R H List, and R E Mann, and D L Wiedbrauk
January 1961, Pathologia et microbiologia,
R L Anacker, and R H List, and R E Mann, and D L Wiedbrauk
March 2003, Clinical and diagnostic laboratory immunology,
R L Anacker, and R H List, and R E Mann, and D L Wiedbrauk
September 1982, Journal of the Reticuloendothelial Society,
R L Anacker, and R H List, and R E Mann, and D L Wiedbrauk
January 1995, Archives of virology,
R L Anacker, and R H List, and R E Mann, and D L Wiedbrauk
January 1987, Journal of clinical microbiology,
Copied contents to your clipboard!