| D008297 |
Male |
|
Males |
|
| D008561 |
Membrane Fusion |
The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. |
Fusion, Membrane,Fusions, Membrane,Membrane Fusions |
|
| D008959 |
Models, Neurological |
Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. |
Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic |
|
| D009435 |
Synaptic Transmission |
The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. |
Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic |
|
| D002478 |
Cells, Cultured |
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. |
Cultured Cells,Cell, Cultured,Cultured Cell |
|
| D005260 |
Female |
|
Females |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D013572 |
Synaptic Vesicles |
Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. |
Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic |
|
| D050600 |
SNARE Proteins |
A superfamily of small proteins which are involved in the MEMBRANE FUSION events, intracellular protein trafficking and secretory processes. They share a homologous SNARE motif. The SNARE proteins are divided into subfamilies: QA-SNARES; QB-SNARES; QC-SNARES; and R-SNARES. The formation of a SNARE complex (composed of one each of the four different types SNARE domains (Qa, Qb, Qc, and R)) mediates MEMBRANE FUSION. Following membrane fusion SNARE complexes are dissociated by the NSFs (N-ETHYLMALEIMIDE-SENSITIVE FACTORS), in conjunction with SOLUBLE NSF ATTACHMENT PROTEIN, i.e., SNAPs (no relation to SNAP 25.) |
SNAP Receptor,SNARE Protein,NSF Attachment Protein Receptor,Receptor, SNAP,SNAP Receptors,SNARE,SNAREs,Soluble N-ethylmaleimide-Sensitive-Factor Attachment Protein Receptor,Target Membrane SNARE Proteins,Target SNARE Proteins,Vesicle SNARE Proteins,Vesicular SNARE Proteins,t-SNARE,tSNAREs,v-SNARE,v-SNAREs,Protein, SNARE,SNARE Proteins, Target,SNARE Proteins, Vesicle,SNARE Proteins, Vesicular,Soluble N ethylmaleimide Sensitive Factor Attachment Protein Receptor,v SNAREs |
|
| D050863 |
Synaptotagmin I |
A vesicular transport protein expressed predominately in NEURONS. Synaptotagmin helps regulate EXOCYTOSIS of SYNAPTIC VESICLES and appears to serve as a calcium sensor to trigger NEUROTRANSMITTER release. It also acts as a nerve cell receptor for certain BOTULINUM TOXINS. |
Synaptic Vesicle Protein p65,Synaptotagmin 1,p65 Protein (Synaptotagmin I) |
|