Ovulation inhibition by administration of weekly gonadotropin-releasing hormone antagonist. 1986

D Kenigsberg, and G D Hodgen

To test the feasibility of administering the GnRH antagonist [(Ac-pClPhe1,pClPhe2,DTrp3,DArg6,DAla10) GnRH] intermittently to inhibit ovulation, this agent was given to normal ovulatory cynomolgus monkeys once weekly for 4 weeks. Ovulation was blocked in all females (eight of eight) throughout the 32 study weeks and resumed within 14.3 +/- 3.8 (+/- SEM) days in six of eight primates. Interestingly, mean tonic serum estradiol levels were not significantly reduced during treatment. Conversely, although midcycle levels of estradiol were not found, moderate estradiol levels occurred but they did not elicit preovulatory LH surges during the week after GnRH antagonist injection. In a second study directed at clarifying the mechanism(s) by which estrogen-induced LH surges were blocked, monkeys received GnRH antagonist in the early through the midfollicular phase of the menstrual cycle during which an estrogen (n = 3) or a GnRH (n = 4) challenge test was given on cycle day 6. Among monkeys receiving estradiol benzoate or a bolus dose of GnRH during the GnRH antagonist regimen, only those given GnRH (four of four monkeys) had increased LH secretion. These responses were similar to those of control monkeys (n = 3). Indeed, the pituitary was refractory (three of three monkeys) to estrogen-positive feedback for the LH surge. These findings indicate the potential utility of intermittent GnRH antagonist treatment to achieve contraception by ovulation inhibition, without creating a severely hypoestrogenic milieu attendant with the risks of negative sequelae effecting bone calcium loss, hot flushes, and atrophy of estrogen-dependent genital tissues.

UI MeSH Term Description Entries
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008597 Menstrual Cycle The period from onset of one menstrual bleeding (MENSTRUATION) to the next in an ovulating woman or female primate. The menstrual cycle is regulated by endocrine interactions of the HYPOTHALAMUS; the PITUITARY GLAND; the ovaries; and the genital tract. The menstrual cycle is divided by OVULATION into two phases. Based on the endocrine status of the OVARY, there is a FOLLICULAR PHASE and a LUTEAL PHASE. Based on the response in the ENDOMETRIUM, the menstrual cycle is divided into a proliferative and a secretory phase. Endometrial Cycle,Ovarian Cycle,Cycle, Endometrial,Cycle, Menstrual,Cycle, Ovarian,Cycles, Endometrial,Cycles, Menstrual,Cycles, Ovarian,Endometrial Cycles,Menstrual Cycles,Ovarian Cycles
D010060 Ovulation The discharge of an OVUM from a rupturing follicle in the OVARY. Ovulations
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D004334 Drug Administration Schedule Time schedule for administration of a drug in order to achieve optimum effectiveness and convenience. Administration Schedule, Drug,Administration Schedules, Drug,Drug Administration Schedules,Schedule, Drug Administration,Schedules, Drug Administration
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females

Related Publications

D Kenigsberg, and G D Hodgen
July 1983, Fertility and sterility,
D Kenigsberg, and G D Hodgen
November 1985, Journal of steroid biochemistry,
D Kenigsberg, and G D Hodgen
March 2022, Revista brasileira de ginecologia e obstetricia : revista da Federacao Brasileira das Sociedades de Ginecologia e Obstetricia,
D Kenigsberg, and G D Hodgen
April 1984, American journal of obstetrics and gynecology,
D Kenigsberg, and G D Hodgen
January 1983, Archives of gynecology,
D Kenigsberg, and G D Hodgen
August 2010, Fertility and sterility,
D Kenigsberg, and G D Hodgen
December 1986, Biology of reproduction,
D Kenigsberg, and G D Hodgen
August 1987, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke,
Copied contents to your clipboard!