Syk: a new target for attenuation of Helicobacter pylori-induced gastric mucosal inflammatory responses. 2019

Bronislaw L Slomiany, and Amalia Slomiany
Research Center, C855, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, 110 Bergen Street, PO Box 1709, Newark, NJ, 07103-2400, USA. slomiabr@sdm.rutgers.edu.

The magnitude of gastric mucosal inflammatory response to H. pylori relies primarily on the extent of its key endotoxin, LPS, engagement of Toll-like receptor-4 (TLR4) and the initiation of signal transduction events converging on mitogen-activated protein kinase (MAPK) and IκB complex (IKK) cascades. These cascades, in turn, exert their control over the assembly of transcription factors, NFκB and AP1, implicated in the induction of the expression of iNOS and COX-2 proinflammatory genes. The LPS-induced TLR4 activation and the ensuing phosphorylation of its intracellular tyrosine domain by Src-family kinases not only leads to recruitment to the cytoplasmic domain of TLR4 of adaptor molecules directly involved in propagation of the signaling cascades converging on MAPK and IKK, but also provides a propitious docking site for a non-receptor tyrosine kinase, spleen tyrosine kinase (Syk), the activation of which apparently leads to upregulation in the expression of proinflammatory genes. Here, we review the pathways engaged by H. pylori in the recruitment and interaction of Syk with TLR4 in gastric mucosa, and discuss the cascades involved in Syk-mediated amplification in proinflammatory signaling. We focus, moreover, on the potential role of drugs targeting Syk and TLR4 in the treatment of H. pylori-related gastric disease.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D005753 Gastric Mucosa Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones. Cardiac Glands,Gastric Glands,Pyloric Glands,Cardiac Gland,Gastric Gland,Gastric Mucosas,Gland, Cardiac,Gland, Gastric,Gland, Pyloric,Glands, Cardiac,Glands, Gastric,Glands, Pyloric,Mucosa, Gastric,Mucosas, Gastric,Pyloric Gland
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072377 Syk Kinase An SH2 domain-containing non-receptor tyrosine kinase that regulates signal transduction downstream of a variety of receptors including B-CELL ANTIGEN RECEPTORS. It functions in both INNATE IMMUNITY and ADAPTIVE IMMUNITY and also mediates signaling in CELL ADHESION; OSTEOGENESIS; PLATELET ACTIVATION; and vascular development. SYK Tyrosine Kinase,Spleen Tyrosine Kinase,Kinase, SYK Tyrosine,Kinase, Spleen Tyrosine,Kinase, Syk,Tyrosine Kinase, SYK,Tyrosine Kinase, Spleen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016480 Helicobacter pylori A spiral bacterium active as a human gastric pathogen. It is a gram-negative, urease-positive, curved or slightly spiral organism initially isolated in 1982 from patients with lesions of gastritis or peptic ulcers in Western Australia. Helicobacter pylori was originally classified in the genus CAMPYLOBACTER, but RNA sequencing, cellular fatty acid profiles, growth patterns, and other taxonomic characteristics indicate that the micro-organism should be included in the genus HELICOBACTER. It has been officially transferred to Helicobacter gen. nov. (see Int J Syst Bacteriol 1989 Oct;39(4):297-405). Campylobacter pylori,Campylobacter pylori subsp. pylori,Campylobacter pyloridis,Helicobacter nemestrinae
D016481 Helicobacter Infections Infections with organisms of the genus HELICOBACTER, particularly, in humans, HELICOBACTER PYLORI. The clinical manifestations are focused in the stomach, usually the gastric mucosa and antrum, and the upper duodenum. This infection plays a major role in the pathogenesis of type B gastritis and peptic ulcer disease. Infections, Helicobacter,Helicobacter Infection,Infection, Helicobacter
D051197 Toll-Like Receptor 4 A pattern recognition receptor that interacts with LYMPHOCYTE ANTIGEN 96 and LIPOPOLYSACCHARIDES. It mediates cellular responses to GRAM-NEGATIVE BACTERIA. TLR4 Receptor,Toll-4 Receptor,Receptor, TLR4,Toll 4 Receptor,Toll Like Receptor 4

Related Publications

Bronislaw L Slomiany, and Amalia Slomiany
April 1996, Alimentary pharmacology & therapeutics,
Bronislaw L Slomiany, and Amalia Slomiany
December 2020, Journal of cancer prevention,
Bronislaw L Slomiany, and Amalia Slomiany
February 2002, Nihon rinsho. Japanese journal of clinical medicine,
Bronislaw L Slomiany, and Amalia Slomiany
May 1994, Clinical and diagnostic laboratory immunology,
Bronislaw L Slomiany, and Amalia Slomiany
March 2001, Cancer letters,
Bronislaw L Slomiany, and Amalia Slomiany
December 2002, The Keio journal of medicine,
Bronislaw L Slomiany, and Amalia Slomiany
December 2002, The Keio journal of medicine,
Bronislaw L Slomiany, and Amalia Slomiany
October 1993, Gut,
Bronislaw L Slomiany, and Amalia Slomiany
February 2005, World journal of gastroenterology,
Bronislaw L Slomiany, and Amalia Slomiany
January 1999, Infection and immunity,
Copied contents to your clipboard!