Processed human amniotic fluid retains its antibacterial activity. 2019

Yong Mao, and Jan Pierce, and Anya Singh-Varma, and Michael Boyer, and Joachim Kohn, and Jo-Anna Reems
New Jersey Center for Biomaterials, Rutgers University, 145 Bevier Rd., Piscataway, NJ, 08854, USA.

Human amniotic fluid (AF) contains numerous nutrients, trophic factors and defense proteins that provide a nurturing and protective environment for fetal development. Based on reports that AF has antibacterial, anti-inflammatory and regenerative properties, we designed a novel method to process AF for use in clinical care. Six randomly selected lots of processed AF (pAF) were examined to determine whether they retained their antibacterial activity against a panel of wound-associated pathogens E. faecium, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, and E. aerogenes (ESKAPE). To identify proteins in pAF that might be responsible for its antibacterial activity, three different lots of pAF were analyzed with quantitative cytokine arrays that consisted of 400 unique human proteins. One protein identified by microarrays, lactoferrin, and a second prominent antibacterial protein that was not identified by microarrays, lysozyme, were examined by depletion experiments to determine their contribution to the antibacterial activity of pAF. All six lots of pAF exhibited antibacterial activity against ESKAPE microorganisms, especially against the pathogens predominately found in chronic wounds (i.e. S. aureus and P. aeruginosa). Thirty-one of the peptides on the microarray were annotated as having antibacterial activity and 26 of these were detected in pAF. Cystatin C and lactoferrin were among the most highly expressed antibacterial proteins in pAF. Cystatin C and lactoferrin were confirmed by ELISA to be present in pAF along with lysozyme. Immunoprecipitation of lactoferrin and lysozyme reduced, but did not abolish the antibacterial activities of pAF. Our data demonstrate that pAF maintains antibacterial activity via the preservation of antibacterial proteins against a broad spectrum of wound-associated pathogens.

UI MeSH Term Description Entries
D007781 Lactoferrin An iron-binding protein that was originally characterized as a milk protein. It is widely distributed in secretory fluids and is found in the neutrophilic granules of LEUKOCYTES. The N-terminal part of lactoferrin possesses a serine protease which functions to inactivate the TYPE III SECRETION SYSTEM used by bacteria to export virulence proteins for host cell invasion. Lactotransferrin
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000653 Amniotic Fluid A clear, yellowish liquid that envelopes the FETUS inside the sac of AMNION. In the first trimester, it is likely a transudate of maternal or fetal plasma. In the second trimester, amniotic fluid derives primarily from fetal lung and kidney. Cells or substances in this fluid can be removed for prenatal diagnostic tests (AMNIOCENTESIS). Amniotic Fluid Index,Amniotic Fluid Indices,Amniotic Fluids,Fluid Index, Amniotic,Fluid Indices, Amniotic,Fluid, Amniotic,Fluids, Amniotic,Index, Amniotic Fluid,Indices, Amniotic Fluid
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D013211 Staphylococcus aureus Potentially pathogenic bacteria found in nasal membranes, skin, hair follicles, and perineum of warm-blooded animals. They may cause a wide range of infections and intoxications.
D023181 Antimicrobial Cationic Peptides Small cationic peptides that are an important component, in most species, of early innate and induced defenses against invading microbes. In animals they are found on mucosal surfaces, within phagocytic granules, and on the surface of the body. They are also found in insects and plants. Among others, this group includes the DEFENSINS, protegrins, tachyplesins, and thionins. They displace DIVALENT CATIONS from phosphate groups of MEMBRANE LIPIDS leading to disruption of the membrane. Cationic Antimicrobial Peptide,Cationic Antimicrobial Peptides,Cationic Host Defense Peptides,Host Defense Peptide,Microbicidal Cationic Proteins,Amphipathic Cationic Antimicrobial Peptides,Host Defense Peptides,Antimicrobial Peptide, Cationic,Antimicrobial Peptides, Cationic,Cationic Peptides, Antimicrobial,Cationic Proteins, Microbicidal,Defense Peptide, Host,Defense Peptides, Host,Peptide, Cationic Antimicrobial,Peptide, Host Defense,Peptides, Antimicrobial Cationic,Peptides, Cationic Antimicrobial,Peptides, Host Defense,Proteins, Microbicidal Cationic

Related Publications

Yong Mao, and Jan Pierce, and Anya Singh-Varma, and Michael Boyer, and Joachim Kohn, and Jo-Anna Reems
October 1972, American journal of obstetrics and gynecology,
Yong Mao, and Jan Pierce, and Anya Singh-Varma, and Michael Boyer, and Joachim Kohn, and Jo-Anna Reems
June 1987, Minerva ginecologica,
Yong Mao, and Jan Pierce, and Anya Singh-Varma, and Michael Boyer, and Joachim Kohn, and Jo-Anna Reems
June 1979, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde,
Yong Mao, and Jan Pierce, and Anya Singh-Varma, and Michael Boyer, and Joachim Kohn, and Jo-Anna Reems
June 1986, British journal of obstetrics and gynaecology,
Yong Mao, and Jan Pierce, and Anya Singh-Varma, and Michael Boyer, and Joachim Kohn, and Jo-Anna Reems
November 1985, Nihon Sanka Fujinka Gakkai zasshi,
Yong Mao, and Jan Pierce, and Anya Singh-Varma, and Michael Boyer, and Joachim Kohn, and Jo-Anna Reems
April 1984, British journal of obstetrics and gynaecology,
Yong Mao, and Jan Pierce, and Anya Singh-Varma, and Michael Boyer, and Joachim Kohn, and Jo-Anna Reems
January 2012, PloS one,
Yong Mao, and Jan Pierce, and Anya Singh-Varma, and Michael Boyer, and Joachim Kohn, and Jo-Anna Reems
January 1986, Biology of the neonate,
Yong Mao, and Jan Pierce, and Anya Singh-Varma, and Michael Boyer, and Joachim Kohn, and Jo-Anna Reems
August 1958, Minerva ginecologica,
Yong Mao, and Jan Pierce, and Anya Singh-Varma, and Michael Boyer, and Joachim Kohn, and Jo-Anna Reems
January 1983, Gynecologic and obstetric investigation,
Copied contents to your clipboard!