[Effect of olivomycin on denervation changes in the membrane of frog tonic muscle fibers]. 1978

T L Radziukevich

Membrane properties of frog denervated tonic muscle fibers were investigated after the action of olivomycin, which is an inhibitor of protein synthesis. Olivomycin injected as a single dose (7.5 mg) during 1--2 days after the denervation of m. pyriformis decreases the regenerative action potentials. This action is decreased three weeks after denervation. After denervation, olivomycin failed to prevent the appearance of extrajunctional cholinoergic receptors, but blocked the increase of junctional ones. The data support the view that some neuronal factor may influence the synthesis of functional membrane proteins.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009121 Muscle Denervation The resection or removal of the innervation of a muscle or muscle tissue. Denervation, Muscle,Denervations, Muscle,Muscle Denervations
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D009848 Olivomycins A mixture of several closely related glycosidic antibiotics obtained from Actinomyces (or Streptomyces) olivoreticuli. They are used as fluorescent dyes that bind to DNA and prevent both RNA and protein synthesis and are also used as antineoplastic agents. Olivomycin
D011896 Rana temporaria A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc. European Common Frog,Frog, Common European,Common European Frog,Common Frog, European,European Frog, Common,Frog, European Common
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied

Related Publications

T L Radziukevich
August 1978, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
T L Radziukevich
December 1949, Journal of cellular and comparative physiology,
T L Radziukevich
August 1961, Science (New York, N.Y.),
T L Radziukevich
September 1962, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
T L Radziukevich
February 1974, Acta physiologica Scandinavica,
T L Radziukevich
January 1984, The American journal of physiology,
T L Radziukevich
September 1971, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
T L Radziukevich
April 1966, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
T L Radziukevich
January 1991, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!