Biosynthesis of two developmentally distinct acid phosphatase isozymes in Dictyostelium discoideum. 1986

V D Bennett, and R L Dimond

The presence of a common antigenic determinant on the Dictyostelium discoideum acid phosphatase isozyme 1 (ap 1), and the absence of this determinant on the isozyme ap2 enables separation of the two isozymes. This separation is accomplished by removal of ap1 from samples with a common antigen monoclonal antibody followed by immunoprecipitation of ap2 with an acid phosphatase monoclonal antibody. Application of this separation scheme on cells pulse-labeled early (2 h) and late (18 h) in the developmental cycle reveal that ap1 protein synthesis occurs only early in development and that the protein remains stable throughout development, whereas ap2 protein synthesis occurs only late in development. Furthermore, pulse-chase experiments during both early and late development reveal that both isozymes of acid phosphatase are initially synthesized as precursor molecules (Mr = 60,000) which are then processed to mature forms (Mr = 58,000). The processing event(s) for acid phosphatase begin in less than 5 min compared to 25-30 min for Dictyostelium alpha-mannosidase and 10-15 min for Dictyostelium beta-glucosidase. Endoglycosidase H and Endoglycosidase F treatment of both isozymes reveals identical cleavage patterns for ap1 and ap2, indicating that the amount of carbohydrate on both molecules is equivalent. Preliminary studies to identify modification differences reveal that fucose is not present on either isozyme; however, sulfate is present on the ap1 isozyme and absent on the ap2 isozyme. These results suggest that differences in the modification of newly synthesized acid phosphatase at different times during the Dictyostelium life cycle result in the appearance of two distinct acid phosphatase isozymes.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006026 Glycoside Hydrolases Any member of the class of enzymes that catalyze the cleavage of the glycosidic linkage of glycosides and the addition of water to the resulting molecules. Endoglycosidase,Exoglycosidase,Glycohydrolase,Glycosidase,Glycosidases,Glycoside Hydrolase,Endoglycosidases,Exoglycosidases,Glycohydrolases,Hydrolase, Glycoside,Hydrolases, Glycoside
D006596 Hexosaminidases Enzymes that catalyze the hydrolysis of N-acylhexosamine residues in N-acylhexosamides. Hexosaminidases also act on GLUCOSIDES; GALACTOSIDES; and several OLIGOSACCHARIDES. Galactosaminidases,Hexosaminidase,Galactosaminidase,Glucosaminidase,Glucosaminidases
D000135 Acid Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.2. Acid beta-Glycerophosphatase,Acid beta Glycerophosphatase

Related Publications

V D Bennett, and R L Dimond
June 1987, Molecular and cellular biology,
V D Bennett, and R L Dimond
December 1969, Journal of bacteriology,
V D Bennett, and R L Dimond
November 1981, Journal of biochemistry,
V D Bennett, and R L Dimond
January 2006, Eukaryotic cell,
V D Bennett, and R L Dimond
March 1965, Journal of general microbiology,
V D Bennett, and R L Dimond
April 1983, Journal of embryology and experimental morphology,
Copied contents to your clipboard!