Rapid-scan stopped-flow studies of the pH dependence of the reaction between mercuric reductase and NADPH. 1986

L Sahlman, and A M Lambeir, and S Lindskog

The reaction of NADPH with the flavoenzyme mercuric reductase has been studied by rapid-scan stopped-flow spectrophotometry at 5 degrees C in the pH range 5.1-9.5. An intermediate formed within the dead time of the apparatus, and proposed to be an NADPH complex of oxidized enzyme, has an almost pH-independent spectrum. At pH 5.1 the formation of this species is followed by a rapid bleaching (k = 145 s-1) of the main flavin absorption band at 455 nm concomitantly with an absorbance increase around 395 nm. This process, which has a kinetic hydrogen isotope effect of 2.4, becomes less prominent at higher pH values and is not detectable above pH 7. It is suggested that this process includes the formation of a covalent thiol-flavin C-4a derivative stabilized by protonation of the active site. In the presence of an excess of NADPH, the final product of the reaction is probably an NADPH complex of two-electron-reduced enzyme, but below pH 6 the final spectrum becomes less intense suggesting a partial formation of four-electron-reduced enzyme. The spectral changes observed above pH 7 are nearly independent of pH. The first measurable step (k = 48 s-1 at pH 9.5) is thought to include the formation of an NADP+ complex of two-electron-reduced enzyme, while the final step (k = 6.3 s-1 at pH 9.5) results in the above-mentioned NADPH complex with two-electron-reduced enzyme. A minimal kinetic scheme rationalizing the observed pH dependence of the reaction and the observed isotope effects is presented.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003201 Computers Programmable electronic devices designed to accept data, perform prescribed mathematical and logical operations at high speed, and display the results of these operations. Calculators, Programmable,Computer Hardware,Computers, Digital,Hardware, Computer,Calculator, Programmable,Computer,Computer, Digital,Digital Computer,Digital Computers,Programmable Calculator,Programmable Calculators
D003903 Deuterium The stable isotope of hydrogen. It has one neutron and one proton in the nucleus. Deuterons,Hydrogen-2,Hydrogen 2
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic

Related Publications

L Sahlman, and A M Lambeir, and S Lindskog
November 1983, Biochemical and biophysical research communications,
L Sahlman, and A M Lambeir, and S Lindskog
April 1988, European journal of biochemistry,
L Sahlman, and A M Lambeir, and S Lindskog
January 1978, Methods in enzymology,
L Sahlman, and A M Lambeir, and S Lindskog
April 1987, European journal of biochemistry,
L Sahlman, and A M Lambeir, and S Lindskog
December 1982, Journal of biochemistry,
L Sahlman, and A M Lambeir, and S Lindskog
August 1991, The Journal of biological chemistry,
L Sahlman, and A M Lambeir, and S Lindskog
January 1987, Biochimica et biophysica acta,
L Sahlman, and A M Lambeir, and S Lindskog
May 1987, Biochemistry and cell biology = Biochimie et biologie cellulaire,
Copied contents to your clipboard!