A Bayesian Network Approach to Disease Subtype Discovery. 2019

Mei-Sing Ong
Department of Population Medicine, Harvard Medical School & Harvard Pilgrim Health Care Institute, Boston, MA, USA. mei-sing_ong@hms.harvard.edu.

Human diseases are historically categorized into groups based on the specific organ or tissue affected. Over the past two decades, advances in high-throughput genomic and proteomic technologies have generated substantial evidence demonstrating that many diseases are in fact markedly heterogeneous, comprising multiple clinically and molecularly distinct subtypes that simply share an anatomical location. Here, a Bayesian network analysis is applied to study comorbidity patterns that define disease subtypes in pediatric pulmonary hypertension. The analysis relearned established subtypes, thus validating the approach, and identified rare subtypes that are difficult to discern through clinical observations, providing impetus for deeper investigation of the disease subtypes that will enrich current disease classifications. Further advances linking disease subtypes to therapeutic response, disease outcomes, as well as the molecular profiles of individual subtypes will provide impetus for the development of more effective and targeted therapies.

UI MeSH Term Description Entries
D006976 Hypertension, Pulmonary Increased VASCULAR RESISTANCE in the PULMONARY CIRCULATION, usually secondary to HEART DISEASES or LUNG DISEASES. Pulmonary Hypertension
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D001499 Bayes Theorem A theorem in probability theory named for Thomas Bayes (1702-1761). In epidemiology, it is used to obtain the probability of disease in a group of people with some characteristic on the basis of the overall rate of that disease and of the likelihood of that characteristic in healthy and diseased individuals. The most familiar application is in clinical decision analysis where it is used for estimating the probability of a particular diagnosis given the appearance of some symptoms or test result. Bayesian Analysis,Bayesian Estimation,Bayesian Forecast,Bayesian Method,Bayesian Prediction,Analysis, Bayesian,Bayesian Approach,Approach, Bayesian,Approachs, Bayesian,Bayesian Approachs,Estimation, Bayesian,Forecast, Bayesian,Method, Bayesian,Prediction, Bayesian,Theorem, Bayes
D016000 Cluster Analysis A set of statistical methods used to group variables or observations into strongly inter-related subgroups. In epidemiology, it may be used to analyze a closely grouped series of events or cases of disease or other health-related phenomenon with well-defined distribution patterns in relation to time or place or both. Clustering,Analyses, Cluster,Analysis, Cluster,Cluster Analyses,Clusterings
D053263 Gene Regulatory Networks Interacting DNA-encoded regulatory subsystems in the GENOME that coordinate input from activator and repressor TRANSCRIPTION FACTORS during development, cell differentiation, or in response to environmental cues. The networks function to ultimately specify expression of particular sets of GENES for specific conditions, times, or locations. Gene Circuits,Gene Modules,Gene Networks,Transcriptional Networks,Gene Module,Circuit, Gene,Circuits, Gene,Gene Circuit,Gene Network,Gene Regulatory Network,Module, Gene,Modules, Gene,Network, Gene,Network, Gene Regulatory,Network, Transcriptional,Networks, Gene,Networks, Gene Regulatory,Networks, Transcriptional,Regulatory Network, Gene,Regulatory Networks, Gene,Transcriptional Network
D020869 Gene Expression Profiling The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell. Gene Expression Analysis,Gene Expression Pattern Analysis,Transcript Expression Analysis,Transcriptome Profiling,Transcriptomics,mRNA Differential Display,Gene Expression Monitoring,Transcriptome Analysis,Analyses, Gene Expression,Analyses, Transcript Expression,Analyses, Transcriptome,Analysis, Gene Expression,Analysis, Transcript Expression,Analysis, Transcriptome,Differential Display, mRNA,Differential Displays, mRNA,Expression Analyses, Gene,Expression Analysis, Gene,Gene Expression Analyses,Gene Expression Monitorings,Gene Expression Profilings,Monitoring, Gene Expression,Monitorings, Gene Expression,Profiling, Gene Expression,Profiling, Transcriptome,Profilings, Gene Expression,Profilings, Transcriptome,Transcript Expression Analyses,Transcriptome Analyses,Transcriptome Profilings,mRNA Differential Displays

Related Publications

Mei-Sing Ong
June 2008, Physical review letters,
Mei-Sing Ong
July 2003, Bioinformatics (Oxford, England),
Mei-Sing Ong
July 2004, Bioinformatics (Oxford, England),
Mei-Sing Ong
January 2004, Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference,
Mei-Sing Ong
January 2021, Journal of biomedical informatics,
Mei-Sing Ong
January 1991, IEEE transactions on neural networks,
Mei-Sing Ong
January 2017, Bioinformatics (Oxford, England),
Mei-Sing Ong
September 2002, Science's STKE : signal transduction knowledge environment,
Copied contents to your clipboard!