Reversible depletion of synaptic vesicles induced by application of high external potassium to the frog neuromuscular junction. 1978

J F Gennaro, and W L Nastuk, and D T Rutherford

1. Reversible depletion of synaptic vesicles from frog cutaneous pectoris neuromuscular junctions was studied by application of a Ringer solution containing 115 mM-K propionate.2. During the release of transmitter, the synaptic vesicle membrane is added to the axolemmal membrane. Under the conditions of high K(+)-induced release, the synaptic vesicle membrane accumulates as folds formed in the region of the axolemmal membrane between the active zones. In depleted terminals, large vesicular structures appear and the evidence shows that some of them (possibly all) are formed as axolemmal infoldings. During formation of such infoldings the active zones remain fixed in position with respect to the post-junctional membrane.3. During recovery in normal Ringer solution, which followed 30 min depolarization in high K(+) Ringer solution, spontaneous m.e.p.p.s were detected as early as 9 min after the start of the recovery period and the average time for their reappearance was 17 min.4. At the end of a 20 min recovery period which followed K(+) depolarization, small accumulations of synaptic vesicles were again found within the terminal close to the active zones. At this time coated vesicles and coated pits were seen associated with the prejunctional axolemma and its infoldings. It appears that synaptic vesicles are re-formed directly from these coated vesicles.5. After 60 min recovery from K(+) depolarization, at which time stimulation of the motor nerve induced a muscle twitch, the structure of the terminals closely resembled that of control preparations.6. The entire synaptic vesicle recycling process can take place in the absence of the neurone soma.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

J F Gennaro, and W L Nastuk, and D T Rutherford
August 2004, Neuropharmacology,
J F Gennaro, and W L Nastuk, and D T Rutherford
November 1976, Experientia,
J F Gennaro, and W L Nastuk, and D T Rutherford
October 1980, The Journal of cell biology,
J F Gennaro, and W L Nastuk, and D T Rutherford
May 1973, The Journal of cell biology,
J F Gennaro, and W L Nastuk, and D T Rutherford
January 1984, Brain research,
J F Gennaro, and W L Nastuk, and D T Rutherford
June 1974, The Journal of cell biology,
J F Gennaro, and W L Nastuk, and D T Rutherford
July 1987, Journal of neurophysiology,
J F Gennaro, and W L Nastuk, and D T Rutherford
June 1998, Journal of neurochemistry,
J F Gennaro, and W L Nastuk, and D T Rutherford
September 2006, Neuroscience and behavioral physiology,
J F Gennaro, and W L Nastuk, and D T Rutherford
July 2003, Neuron,
Copied contents to your clipboard!