Crosslinked Sulfonated Poly(vinyl alcohol)/Graphene Oxide Electrospun Nanofibers as Polyelectrolytes. 2019

Oscar Gil-Castell, and Diana Galindo-Alfaro, and Soraya Sánchez-Ballester, and Roberto Teruel-Juanes, and José David Badia, and Amparo Ribes-Greus
Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain. ogilcastell@doctor.upv.es.

Taking advantage of the high functionalization capacity of poly(vinyl alcohol) (PVA), bead-free homogeneous nanofibrous mats were produced. The addition of functional groups by means of grafting strategies such as the sulfonation and the addition of nanoparticles such as graphene oxide (GO) were considered to bring new features to PVA. Two series of sulfonated and nonsulfonated composite nanofibers, with different compositions of GO, were prepared by electrospinning. The use of sulfosuccinic acid (SSA) allowed crosslinked and functionalized mats with controlled size and morphology to be obtained. The functionalization of the main chain of the PVA and the determination of the optimum composition of GO were analyzed in terms of the nanofibrous morphology, the chemical structure, the thermal properties, and conductivity. The crosslinking and the sulfonation treatment decreased the average fiber diameter of the nanofibers, which were electrical insulators regardless of the composition. The addition of small amounts of GO contributed to the retention of humidity, which significantly increased the proton conductivity. Although the single sulfonation of the polymer matrix produced a decrease in the proton conductivity, the combination of the sulfonation, the crosslinking, and the addition of GO enhanced the proton conductivity. The proposed nanofibers can be considered as good candidates for being exploited as valuable components for ionic polyelectrolyte membranes.

UI MeSH Term Description Entries

Related Publications

Oscar Gil-Castell, and Diana Galindo-Alfaro, and Soraya Sánchez-Ballester, and Roberto Teruel-Juanes, and José David Badia, and Amparo Ribes-Greus
March 2018, Water science and technology : a journal of the International Association on Water Pollution Research,
Oscar Gil-Castell, and Diana Galindo-Alfaro, and Soraya Sánchez-Ballester, and Roberto Teruel-Juanes, and José David Badia, and Amparo Ribes-Greus
February 2020, Polymers,
Oscar Gil-Castell, and Diana Galindo-Alfaro, and Soraya Sánchez-Ballester, and Roberto Teruel-Juanes, and José David Badia, and Amparo Ribes-Greus
March 2018, ACS applied materials & interfaces,
Oscar Gil-Castell, and Diana Galindo-Alfaro, and Soraya Sánchez-Ballester, and Roberto Teruel-Juanes, and José David Badia, and Amparo Ribes-Greus
July 2019, Journal of nanoscience and nanotechnology,
Oscar Gil-Castell, and Diana Galindo-Alfaro, and Soraya Sánchez-Ballester, and Roberto Teruel-Juanes, and José David Badia, and Amparo Ribes-Greus
October 2016, Colloids and surfaces. B, Biointerfaces,
Oscar Gil-Castell, and Diana Galindo-Alfaro, and Soraya Sánchez-Ballester, and Roberto Teruel-Juanes, and José David Badia, and Amparo Ribes-Greus
January 2019, Scientific reports,
Oscar Gil-Castell, and Diana Galindo-Alfaro, and Soraya Sánchez-Ballester, and Roberto Teruel-Juanes, and José David Badia, and Amparo Ribes-Greus
February 2019, Scientific reports,
Oscar Gil-Castell, and Diana Galindo-Alfaro, and Soraya Sánchez-Ballester, and Roberto Teruel-Juanes, and José David Badia, and Amparo Ribes-Greus
May 2012, ACS applied materials & interfaces,
Oscar Gil-Castell, and Diana Galindo-Alfaro, and Soraya Sánchez-Ballester, and Roberto Teruel-Juanes, and José David Badia, and Amparo Ribes-Greus
July 2020, Colloids and surfaces. B, Biointerfaces,
Oscar Gil-Castell, and Diana Galindo-Alfaro, and Soraya Sánchez-Ballester, and Roberto Teruel-Juanes, and José David Badia, and Amparo Ribes-Greus
November 2020, International journal of biological macromolecules,
Copied contents to your clipboard!